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EXECUTIVE SUMMARY 
 
 The broad objectives of this project are to (a) develop the theoretical foundation 

for the development of a continuum-based, general stable crack extension criterion in 

ductile materials, (b) develop a computational methodology for implementing the 

criterion to predict stable tearing along a general path in three-dimensions, (c) develop 

an initial experimental data base for validation of the predictive methodology and (d) 

develop and validate a mixed mode fracture criterion using the initial experimental data 

base and completed computational methodology.   

 First, detailed theoretical and computational studies of void growth have been 

completed that show (a) for each initial void volume, a functional relationship exists 

between the mean stress  σmean and effective stress σeff at the instant of void link-up and 

crack growth, demonstrating that a two-parameter fracture criterion is viable for 

predicting stable tearing and (b) the experimentally observed link between plastic strain 

and constraint (e.g., a parameter such as Am = σmean/σeff ) further indicates that there is 

the basis for obtaining a critical crack opening displacement (COD) as a function of a 

constraint parameter, that is, COD(Am).  Here, the overall macroscopic direction of 

ductile stable tearing will be primarily a function of the local field quantities and not the 

details of the void nucleation site distribution within the material. 

 Second, a fully functional three-dimensional crack growth algorithm has been 

developed that is capable of predicting crack growth along a general, three-dimensional 

surface.  The algorithm, designated CRACK3D, utilizes the pre- and post-processing 

capabilities of Ansys while performing all of the crack-front calculations internally.  As 

part of the development process, (a) improved methods for crack tip re-meshing have 

been developed and implemented which only re-mesh a region around the current crack 

tip and (b) new approaches for volumetric and surface optimization have been 

developed and implemented.  As part of the development process, detailed simulations 

have been performed to complete the debugging process. 

 Third, a set of controlled mode I, mixed mode I/II and mixed mode I/III 

experiments have been completed for aluminum 2024-T3.  These experiments included 

(a) fatigue marking to identify the surface crack front, (b) three-dimensional non-
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contacting measurements to quantify the shape of a complex, slanted fracture surface 

and (c) measurements of surface COD during stable tearing.  In addition to these 

experiments, a set of experiments have been attempted to related the combination of 

stresses, σmean and σeff, in a region to the presence of actively growing voids.  Here, the 

goal of the experiments is to provide quantitative evidence for defining a portion of the 

relationship between σmean and σeff  for 2024-T3 aluminum. 

 Fourth, a series of computational analyses using measured surface crack 

shapes, crack fronts and load-surface crack extension data to develop a mixed mode 

fracture criterion that is capable of predicting both the direction and onset of stable 

tearing crack extension along a general three-dimensional path in thick and/or thin 

structural components. 
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I. INTRODUCTION 

 
As noted by the National Materials Advisory Board [1], a critical limitation in the 

state-of-the-art for crack-growth simulation technology is the lack of an experimentally 

verifiable, general stable tearing criterion that can be applied to the whole spectrum of 

possible crack-tip loading conditions.  This would include plane stress, plane strain and 

general, three-dimensional conditions. 

To demonstrate the importance of a general stable tearing criterion, recent stable 

tearing test results [2-7] obtained on aluminum alloy specimens show a transition in 

crack growth mode from dominantly Mode I to dominantly Mode II at a critical loading 

mode mixity. This ductile crack growth phenomenon is demonstrated by inspection of 

the various crack paths shown in the figure below, obtained during monotonic loading of 

pre-cracked Arcan specimens made of 2024-T3 aluminum. The angles in Fig. 1 

correspond to different loading mode mixity (ratios of Mode II to Mode I at the crack tip), 

where an angle Φ = 0o corresponds to pure Mode I and an angle Φ =  90o corresponds 

to pure Mode II. What we observed repeatedly from these experiments is that when 

loading is predominantly mode II (e.g. when the loading angle is 75o-90o for 2024-T3 

aluminum) the immediate crack-growth path is of a mode II type. 

For ductile solids, it is well known that stable tearing criteria based on the J-

integral and HRR-theory are valid only for problems involving short-range crack growth.  

The “local mode I” criterion and those based on G, K and/or σθθ (the crack-tip 

circumferential stress) have been used successfully to predict the direction of crack 

growth in brittle solids.  Furthermore, for crack growth in ductile solids, the G-criterion is 

not well defined and the local mode I criterion and the σθ-criterion fail to predict the 

experimentally observed transition in crack-growth mode (from mode I type to mode II 

type) as loading approaches mode II.  Since the assumption of local mode I behavior is 

not necessarily true for ductile materials, oftentimes leading to erroneous predictions for 

crack growth in many airframe materials (e.g. 2024-T3, 2524), it seems clears that basic 

studies which may lead to the development of an experimentally verifiable, general 

mixed mode fracture criterion for ductile materials is a critical need. 
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The idea of a CTOD-based fracture criterion dates back to the 1960s when it was 

first proposed by A. A. Wells to handle crack-growth problems involving dynamic 

fracture [8] and large-scale plasticity [9].  Additional variations in the COD criterion and 

studies supporting its usefulness were further demonstrated in [10-13] for theoretical 

analysis and for finite element-based simulations of stable crack growth in metals.   

It was not until the 1980s that J. C. Newman Jr. et al. [14] published experimental 

results conclusively demonstrating the efficacy of a COD criterion.  It was argued that 

crack growth occurs when the CTOD value at a fixed distance behind the crack tip 

reaches a critical value (which is equivalent to a crack-tip opening angle (CTOA) 

criterion defined at a fixed distance behind the crack tip). This criterion was then used in 

[13] to simulate stable crack growth and to predict a load-crack extension curve, and the 

prediction was found to agree well with test results. 

The strongest evidence for the applicability and superiority of a COD-based 

criterion for mixed mode loading conditions came through recent collaborative efforts 

between our group and Dr. Newman who was at NASA Langley Research Center [2-

7,15-23] at that time.  Using experimentally measured COD values and uniaxial stress-

strain curves, we were able to use finite element simulations with the COD fracture 

criteria to predict the load-crack extension curves that consistently match those 

measured experimentally. The direction of stable tearing in Arcan tests has been 

predicted using local mode I criteria (elastic prediction) and our mixed-mode COD 

criterion and compared to experimental measurements (see Figure 1), where COD 

predictions under small-scale yielding conditions with normalized T-stresses (given be 

B) are also given. The COD criterion correctly predicts the transition in crack growth 

direction when the mixed-mode loading angle is around 700. 

 Since the measured critical COD values are located at the surface of the 

specimen, the effects of through-thickness variations in stress (oftentimes referred to as 

constraint effects) may result in a variation of critical COD values with stress state.  

Since the underlying mechanism for stable tearing is void growth, void sheeting and 

void coalescence, then the "stable tearing" process and critical COD will be related to 

the stress components that cause void growth.  For example, in his recent article 

reviewing the status of stable tearing models and concepts, Thomason [24] notes that 
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(a) limit load between voids is a direct function of the mean stress and (b) coalescence 

of voids and thus crack growth occurs when the inter-void matrix reaches its limit load.   

 The broad objectives of this project are to (a) develop the theoretical foundation 

for the development of a continuum-based, general stable crack growth criterion in 

ductile materials, (b) develop a computational methodology for implementing the 

criterion to predict stable tearing along a general path in three-dimensions and (c) 

develop an initial experimental data base for validation of the predictive methodology.   

In Section II., details of the theoretical work are discussed.  In Section III, a summary of 

the work done to develop the computational algorithm CRACK3D is presented.  In 

Section IV, an outline of the experimental work is given.  In Section V, a summary of the 

work is provided. 

 
II. THEORETICAL DEVELOPMENTS 
 
II.1 Plane Strain Mixed Mode Crack-Tip Stress Fields Characterized by A Triaxial 

Stress Parameter and A Plastic Deformation Extent Based Characteristic Length 

[25] 

 
II.1.1 Background 
 In an effort to determine whether mixed mode crack tip fields in ductile materials 

can be characterized by a minimum number of parameters, thereby simplifying the 

process of identifying candidate mixed mode fracture criteria, a series of detailed 

elastic-plastic finite element analyses were performed. Each model was subjected to 

mixed mode I/II loading and the crack tip fields were determined.  A wide range of 

length scales (e.g., plastic zone size, specimen dimensions) and parameters that are a 

function of loading (e.g., J-integral, T-stress, mode mixity, mean stress) were 

investigated. Results from the finite element studies are presented, with emphasis on 

the effectiveness of a length scale, Lp, and a constraint parameter, Am = σm/σe (here σm 

and σe are the mean stresses and effective stresses, respectively, as defined in Equs 

(1-3) in a forthcoming section) in characterizing the crack tip fields for all specimen 

geometry considered, even when large-scale yielding is presented.  The self-similar 



 6

family of mixed mode crack tip fields obtained from the numerical studies is investigated 

in more detail.  

 

II.1.2 Numerical Predictions for Crack-Tip Fields 
 
 Due to the large number of length scales and loading parameters that could be 

used to normalize crack-tip fields in ductile materials, a brief discussion of previous 

analytical work in this area is presented.  Results from this work provided the framework 

for the authors to select optimal normalization parameters. 

 It is well know that the fracture of ductile solids has frequently been observed to 

be the result of the nucleation, growth and coalescence of voids, both in nominally 

uniform stress fields and ahead of an extending crack [26]. Since the pioneering study 

of McClintock [27], where he completed the analysis of the expansion of a long circular 

cylinder cavity in a non-hardening material, important relationships between the 

nucleation and growth of a void and the imposed stress and strain fields have been 

found [28-32].  Their work indicates that stress triaxiality (defined as a ratio of mean 

stress over effective stress) and plastic strain in the crack tip region play an important 

role in the process of ductile fracture, with different combinations of plastic strain and 

stress triaxiality resulting in different fracture process zones. Thus, their work suggests 

that two independent parameters are needed to characterize stress fields in the near-tip 

region, one related to stress triaxiality and the other to plastic deformation. 

 As shown graphically in Figures 2a and 2b, for a given angle θ ( θ is the angle 

measured from the crack line with counter-clockwise as positive) then the length scale, 

Lp, based on the extent of crack-tip plastic deformation, is defined to be the radial 

distance from the crack tip to a point where eσ = ξσ0, where eσ  is the von Mises 

effective stress, σ0 is the initial yield stress, and ξ is a constant equal to or larger than 

1.0.  Note that ξ is conveniently chosen to address the potential for unconstrained 

yielding.  That is, ξ is chosen so that (a) the length scale selected for scaling 

corresponds to a “contained” region (i.e., a region so defined that it does not extend to 

stress-free boundaries of the specimen) and (b) the size scale defined by the length 

parameter, Lp(θ), is expected to contain the fracture process zone.  Thus, radial 
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variations in the crack tip stress field will be described in terms of the same normalized 

position within the plastic zone.  Using the length scale r/Lp, a typical crack-tip plastic 

zone under mixed mode I/II loading (e.g., see Figure 2b) will be circular in shape (e.g., 

see Figure 2c), with locations having the same normalized position within the plastic 

zone being on nested concentric circles within the unit circle in an r/Lp coordinate 

system.  

 Based on previous work on ductile fracture, the magnitude of the quantity σm/σe 

in the near-tip region is a viable loading parameter for quantifying the level of constraint 

at any point in the crack tip field.  Here, σe is the von Mises form for the effective stress 

defined by  

 ijije ss
2
32 =σ , (1) 

where sij represents the deviatoric stress components  

 kkijijijs σδσ
3
1

−=  , (2) 

and δij is the Kronecker delta.  The mean stress, σm, is defined by the equation 

   kkm σσ
3
1

= . (3). 

As such, the triaxial stress parameter, Am, is defined in this paper as the near-tip value 

of the ratio σm/σe because numerical results in this paper shown that this ratio is 

basically independent of the radial distance r within the near-tip region. 

 It is expected that any useful description of mixed mode crack tip fields should 

accurately represent crack tip fields for arbitrary specimen geometry under both 

contained and general (uncontained) yielding conditions. This will be demonstrated by 

describing results obtained using the finite element method for (a) a small-scale yielding 

model and (b) full field, general yield solutions of edge-cracked tension specimens and 

bend specimens. In particular, the numerical results will show that the characteristic 

length scale, Lp, sets the size scale over which large stresses and strains develop and 

is an excellent normalizing factor for a unique set of radial variations for the crack-tip 

stress fields.  At the same time, the constraint parameter Am determines the magnitude 
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of the stress distribution while setting the level of constraint in the crack tip region due to 

crack geometry and loading conditions. 

 
II.1.3 Finite Element Models 
 
 Three elastic-plastic materials will be considered in the finite element models: (a) 

an aluminum alloy, 2024-T3, that obeys the J2-flow theory of plasticity (theoretically 

equivalent to a non-linear elastic formulation in the absence of unloading), in which the 

effective stress-strain behavior is given by an experimentally measured uniaxial stress-

strain curve; and (b) two materials with power hardening that obey the J2-deformation 

theory of plasticity and the uniaxial Ramberg-Osgood relationship  

 
n

a ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

000 σ
σ

σ
σ

ε
ε ,  (4) 

where n is the strain hardening exponent and takes the value of 3 in one case and 10 in 

the other, α is a material constant; α = 1 is selected in this study, and 0ε  is a reference 

strain given by E0σ , with 0σ and E being the initial yield stress and Young’s modulus, 

respectively. The stress-strain relations for these three materials are shown in Figure 3. 

In all three cases, GPaE 2.71= , Poisson’s ratio 3.0=v  and MPa5.3440 =σ , which are 

consistent with values commonly used for Al2024-T3.  It is noted that the model in 

Equation 4 includes a non-linear contribution throughout the stress-strain history, even for 

low stress values. 

 Computations were performed with small displacement theory implemented in 

the finite element code ABAQUS [33]. Considering the loss of hardening capacity with 

increasing deformation for Al2024-T3, convergence was studied for several elements 

including (a) a 4-node bilinear element with reduced integration, hourglass control and 

constant pressure capability and (b) an 8-node bi-quadratic element with reduced 

integration and linear pressure capability. For the finite element meshes used in this 

paper, converged finite element solutions were obtained from both elements. The 

results reported below are based on use of a 4-node finite element. 

 To account for the full range of mode mixity and constraint crack tip stress fields, 

the small-scale yielding (SSY) model with a modified boundary layer formulation (see 
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[34] for details) and (b) full-field solutions for TB and asymmetric TPB bars are analyzed 

in detail. The former provides an attractive means to study the effects of mode mixity, 

specimen geometry and loading on the near-tip fields without geometry specification. 

The latter produces full field, mixed mode crack-tip solutions associated with bending 

and tension loading, respectively.  

 The SSY model used in this work is shown in Figure 4. The crack is modeled 

with a focused mesh.  The focused mesh contains 100 concentric circular rings.  Each 

ring contains 72 elements concentric with the crack tip. The crack tip location contains 

73 initially coincident nodes. Mesh refinement was such that elements adjacent to the 

crack tip had a radial length that was 1/9239 of the radial length of the outer elements.  

It is noted that the radial size of the smallest element is simply an artifact of the process 

used to ensure that the plastic zone was much smaller than the radial distance to the 

remote boundary, a requirement for the validity of a small scale yield model. 

 The remote boundaries of the SSY model at radius ar  are subjected to imposed 

displacements, yx uu , , corresponding to combined linear elastic mode I and II stress 

intensity factors IK , IIK , and T-stress fields (for details, see Reference [34]).  It is noted 

that the SSY model described herein is a standard method for applying selected terms 

in the Williams linear elastic solution to boundaries that are remote from the crack tip 

region. 
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Here, μ is elastic shear modulus and v43 −=κ . Let χ = tan-1(ω),which is used as a 

measure of mode mixity for the SSY model. Thus, the crack tip stress fields in the SSY 

model depend on χ, the length parameter RK, and T-stress, which is an in-plane measure 

of constraint level.  In this work, increments of Keff  = (KI
2 + KII

2 )1/2 and T-stress were 

applied along the circular boundary and several combinations of T-stress (T/σ0=0.47, 

0.0, and –0.47) and Keff (corresponding to χ=0o, 36.9o, 71.2o, 90o) were used to obtain 

the SSY crack tip stress fields.  The values of T/σ0 presented in this work span a range 

that represents reasonable upper and lower bounds on the expected values for the T-

stress term.  

 Full field, mixed mode crack-tip solutions were obtained for asymmetric three 

point bend (TPB) bars and slant cracked tension bars (TB).  The geometry and finite 

element meshes for these specimens are illustrated in Figure 5.  A wide range of mode 

mixity and constraint levels were modeled using (a) normalized values for the load 

eccentricity, c, corresponding to the range 0 ≤ c/w ≤ 1.5 for TPB specimens and (b) 

values of β = 0o, 15o, 30o, 60o, and 75o for TB specimens.    For presentation of results, 

the polar coordinate system shown in Fig.1 isused, where the x-axis is along the crack 

direction and +θ is measured counter-clockwise. It is noted that previous researchers 

have tried unsuccessfully to use a J-T-mode mixity approach to characterize the 

maximum tension stress for the TB specimens [35]. 

 

II.1.4 Angular Variation of Lp and Am  
 

Since the stress variations obtained for all specimen geometries and material 

models exhibited nearly identical trends when using Lp and Am to normalize the stress 

fields, typical finite element results are reported for the SSY model using a power law 

material with n=10. 

Figure 6 highlights the angular variation of Lp for the small-scale yielding model 

with different mode mixity, χ, and T-stresses, where Lp is normalized by RK given in 

Eq.(6). In this work, all numerical results for the definition of Lp are based on ξ=1.2, 

which corresponds to a plastic zone size determined by an equivalent plastic strain of 

εp≈3%.  Thus, a value of ξ=1.2 results in a fully “contained” plastic zone for the SSY 
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model that meets the requirement for Lp << ra so that the applied elastic fields dictate 

the conditions prevalent in the crack tip condition.  As shown in Fig. 6, changes in either 

mode mixity or constraint level will modify the angular variation of Lp. In all cases, the 

maximum of Lp occurs in the same direction as the maxima of the shear stress, σe, and 

CODII, that is, which is also the local mode II direction (for details about CODI and 

CODII, see Reference [36]).  Figure 6 also indicates that, for a given T-stress, increasing 

the mode II component of loading will lead to an increase in the maximum value of Lp, 

designated as Lp
II.   The angular variations of σrθ and σe are displayed in the figures for 

comparison. 

In the direction where σθθ, σm/σe and CODI approach a maximum (i.e., a local 

mode I direction), Lp is a local minimum designated as Lp
I.  For all cases considered 

here, Lp
II >>Lp

I,.  Figure 7 shows variations in Lp
II / Lp

I  as a function of mode mixity, χ, for 

the SSY model, where mostly (Lp
II / Lp

I) > 10.  Though not shown here, similar results 

regarding the Lp distribution were obtained for both the TB and TPB specimens. 

The angular variations of Am, σrr and σθθ are shown in Figure 8. For all cases 

considered here, Am takes its maximum value near the direction where the opening 

stress reaches its maximum; in this direction, the in-plane shear stress vanishes so that 

the stress state is locally tensile. 

Trends in the angular distributions of Lp and Am for both the TPB and TB 

specimen geometries are similar to those obtained for the SSY model, even though 

crack tip plastic deformation extends to the specimen surface in some cases.  For 

example, as shown in Figure 9, for a typical TB specimen with β=30o and a TPB with 

c/w=0.5, as the loading increases, the crack tip region undergoes general yielding and 

the plastic zone extends to the specimen surfaces. For these cases, the angular 

distributions of Lp and Am for both the TPB and TB specimen geometries are shown in 

Figures 10 and 11, respectively.   

 
II.1.5 Radial variations along local mode I and mode II directions 
 

In this section, the radial distribution of stresses in the crack tip region is 

presented for the SSY, TB and TPB models described in the previous section.  Material 
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models considered in these studies included both (a) power law hardening with n = 3, 

10 and (b) the measured uniaxial stress-strain data for Al2024-T3.  Typical results are 

provided for (a) the SSY model with power law hardening (n=10) and (b) the TB and 

TPB specimens with power law hardening (n=3) and the measured Al2024-T3 data.  

Since theoretical and experimental studies [36-38] have shown that crack 

initiation and stable crack extension under mixed mode I/II loading in nominally 

homogeneous material systems occur under either local mode I or mode II conditions, 

results in this section are limited to the mixed mode crack tip fields along the directions 

that correspond to a maximum in either local mode I or local mode II parameters. In all 

cases, it will be shown that the radial variation of the stress field along these directions 

is optimally represented as a function of the normalized distance, r/Lp, in that the 

normalized variations of each of the stress component collapse onto a single curve.  

It is noted that, in heterogeneous material systems (e.g., welds, functionally 

graded materials), recent evidence suggests that flaws under nominally mode I/II 

loading may grow under conditions that result in a critical COD that has non-zero 

components for both the shear and opening displacement components.  Further 

research will be required to determine whether this observation is due to changes in 

yield stress and/or local fracture toughness.  

While presenting the results for the radial stress variation, it is noted that the 

fracture process zone for ductile materials is believed to be well within r/Lp
I < 5. 

Furthermore, results from this paper indicate that Lp
II / Lp

I  is mostly larger than 10. As 

such, special attention should be directed to the radial distribution for stresses in the 

region r/Lp
I <5 along the local mode I direction and r / Lp

II < 0.50 in the local mode II 

direction.  It is noted that the limits for comparison given above were used since (a) 

conditions beyond this point are unlikely to affect fracture processes and (b) little 

change in trends was observed beyond this point. 

First, the radial distribution of effective stress is analyzed when distance from 

crack tip is normalized by Lp in mode I and mode II directions, respectively. Figures 12a 

and 12b shows the radial variation of Σe=σe/σ0 with normalized distance r/Lp along both 

the mode I and mode II directions, respectively.  For all levels of mode mixity and T-

stress, the data for Σe falls on a single curve with the amplitude, Ae (the value of Σe at 
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r/Lp=1), equivalent to a constant ξ=1.2 and independent of both T-stress and mode 

mixity.  Clearly, within a distance of r=5Lp
I in mode I direction or r=2Lp

II in mode II 

direction, effective stress is uniquely normalized by Lp. 

 For stress components, σrr, σθθ, σrθ and σm /σe, the radial distribution depends not 

only on normalized distance, r/Lp, but also on T-stress and mode mixity. To observe the 

radial variation of stress components using normalized distance, r/Lp, the stresses in the 

mode I direction and shear stress in mode II direction are scaled by their values at r/Lp
I 

=1.  Normal stresses in the mode II direction are scaled by their values at r/Lp
II =0.1 

since Lp has a smaller effective normalization zone for normal stress than for either 

shear stress or effective stress along the mode II direction.  The scaled stress quantities 

are denoted in the figures by Σ with proper subscripts. To address this issue, we define 

a normalized stress Σij along the mode I direction by  
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Similarly, along the mode II direction, we define the normalized stress Σij  by 
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for σrr, σθθ and σm /σe , respectively, where  
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The normalized shear stress component along mode II direction is defined by 
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 For all SSY model cases using power law hardening (n=10), the radial variation 

of normalized stress Σij in the mode I direction is shown in Figures 13, where each stress 

component is normalized by the value at r/Lp
I=1.0.   Along the mode II direction, Figure 

14 presents the radial variation in Σij for a SSY model using a power law hardening 

(n=10) material, with normal stress component normalized by the value at r/Lp
II=0.10, 

and shear stress component is normalized by the value at r/Lp
I=1.0.  Results for the 

SSY model indicate that over a distance (a) r=5Lp
I in mode I direction for all stresses, (b) 

r=0.5Lp
II in mode II direction for the normal stresses and (c) over a larger distance for σrθ 

in the mode II direction, normalized stresses for all cases are effectively collapsed onto 

a unique radial distribution.   

 Analyses were also completed for the TB and TPB specimens using a power law 

material (n=10). Though the specimens exhibited both contained and large scale 

yielding similar to that shown in Fig. 9, results indicate that the r-dependence of the 

stress components are similar to those shown in Figs 12 to 14 for the SSY model. 

 Using the Al2024-T3 material model, the r-dependence of stresses for the TB 

and TPB specimens is shown in Figures 15, 16 and 17. Comparison of these results to 

those shown in Fig. 12-14 indicates that near the crack-tip, the radial distribution of 

stresses deviates from those of a power law material; outside the small region, the 

radial distribution for each stress component is nearly the same, whether one uses an 

Al2024-T3 material or a power law material (n=10). 

 Finally, using a power law material (n=3) and normalizing by a distance Lp that is 

calculated using the same value ξ=1.2, the radial distributions for the normalized stress 

components were determined for both the TB and TPB specimens.  Figures 18, 19 and 

20 present the results for all stress components, demonstrating that the normalized 

stress components are adequately normalized for all material models. 
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 II.1.6 Relationship between Aij and Am 

 
  The radial distribution results indicate that the mixed mode crack tip fields are 

self-similar when Lp is used to normalize radial distance from the crack tip.  However, if 

Lp and Am are to be used to characterize mixed mode I/II crack tip fields, the amplitude 

of the stress fields, Aij,, defined as value of σij/σ0 at r=Lp 
, must be a well-defined function 

of the stress triaxiality parameter Am. Furthermore, at least along the directions 

corresponding to either local mode I or local mode II, the relationship Aij(Am) must be 

independent of mode mixity, specimen geometry and loading (or T-stress for SSY 

model) 

 Using Eq (8) for Aij and Am in the local mode I direction, Eq (10) with  

( )  =Σ== p
II 

A
ij L 0.10 r at   of  valuef(0.10)        ,

0.10
θ

σ
rij f

A ,   (13) 

for Aij and Am in mode II direction and Eq (12) for Arθ in mode II direction, the 

relationship Aij(Am)  for both mode I and mode II directions is presented in Figure 21 and 

Figure 22, respectively.  Note that the location, r,  in (13) used to determine Σrθ and 

normalize stresses along the local mode II direction is arbitrary and does not alter the 

results in any significant manner. 

 As shown in Eq (13), f(0.10) is a value of a radial stress distribution function at 

r/Lp
II=0.1, and can be taken as the value of  Σrθ.  In these figures, results for both 

Al2024-T3 and power law hardening with n=10 are shown. For a power law material 

with hardening exponent n=3, the amplitude of the stress components Aij for the TB and 

TPB specimens are plotted against Am in Figure 23.  Results presented in Figs 21-23 

clearly indicate that the relationship Aij(Am) is geometry and loading independent, 

demonstrating that stress amplitudes can be uniquely characterized by Am. 

 
II.1.7. The Am-Family of Mixed Mode Crack Tip Fields 
 
 As shown in the previous section, it is possible to describe mixed-mode I/II crack-

tip stress fields for SSY, TB and TPB specimens when using a characteristic length 

parameter, r/Lp, and a constraint parameter, Am.  When used in this manner, normalized 
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crack-tip stresses at the same normalized position will have the same form.  

Furthermore, the level of constraint (e.g., magnitude of Am) within the crack tip region 

defined by Lp determines the amplitude of the stress field.  

 The results provided previously strongly suggests that mixed mode I/II crack tip 

stress fields have the form 

 )(
0 r

LfA
p

ij
ij =

σ
σ

 , (14a) 

with 

 ( )θ,mijij AAA = .         (14b) 

With regard to the model proposed above, it is noted that previous studies for 

non-hardening and perfectly plastic materials [39] are supportive of the general 

concepts embodied in Eqs (14a) and (14b).  Specifically, his work has shown that (a) 

the stress and deformation fields in the crack-tip region are strongly dependent on 

specimen geometry and (b) the crack-tip plastic zone shape and size are a function of   

loading conditions.  The proposed model directly incorporates these concepts through 

the use of Lp for normalization of the length scale and Am to characterize both loading 

and constraint effects.  

 In fact, both analytical results and our FEM data indicate that a viable form for the 

stress components is of the form;  
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where (a) Σij
A=1.0 for normal stress σrr and σθθ in mode I direction and Σij

A=1.0 for σrθ in 

the mode II direction.  Furthermore, Σij
A=(10)1/n+1 for σrr and σθθ in mode II direction. As 

shown in Figures 12-20, Eqs (15) are in very good agreement with results from finite 

element analysis when Lp normalizes distance.  In particular, triaxial stress σm /σe for all 

cases is approximately independent of the normalized distance from crack tip, so that, 

σm /σe ≈ Am. 



 17

 

II.1.8. Concluding Remarks 
 
 Experimental observations and finite element simulations of stable crack growth 

in aluminum alloys under mixed-mode loading conditions have shown that ductile crack 

growth is along local mode I or mode II directions. Results from this study demonstrate 

that the crack-tip stress fields along these two directions can be scaled onto master 

curves that hold for a variety of cases studied that involve different loading mode mixity, 

material hardening behavior, geometry, and boundary conditions. The parameters used 

to scale the field variations are the stress triaxiality Am, which is the ratio between the 

mean stress and the effective stress within near crack-tip region, and the length scale, 

Lp, which is based on the extent of crack tip plastic deformation. In particular, Lp scales 

the radial distance to the crack tip while Am controls the amplitude of the stress 

component.  

 Furthermore, numerical evidence and analysis of the equilibrium equation 

suggest that the utility of Am and Lp in scaling the crack-tip stress fields may be 

extended to the whole crack-tip region, within an extent that is much larger than the 

expected fracture process zone.  Thus the two parameters proposed in this study, Am 

and Lp, are functions of the angular position θ.  Within the crack-tip zone in which Lp 

scales the fields in the radial direction, the relationship between the angular variations of 

the crack-tip stresses and Am(θ) is found to be independent of the specifics of the 

problem, such as loading mixity, geometry, and boundary conditions, etc.  This seems 

to suggest that the Am-family of mixed mode crack-tip fields is totally defined by Am and 

Lp. 

 In addition to being able to scale the crack tip fields, Am and Lp are also shown by 

the finite element results of this study to play essential roles in determining the crack 

growth direction. For a range of problems studied, the finite element solutions of the 

crack-tip fields indicate that the local mode I direction coincides with the maximum 

direction of Am and σθθ, and the local mode II direction coincides with the maximum 

direction of Lp and σe. Thus Am and Lp are equivalent to σθθ and σe, respectively, in 

predicting the direction of crack growth.  Thus, these studies imply that high values for 
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σm/σe will promote the nucleation of microvoids from large particles; this will contribute 

to mode I dimpled fracture. Conversely, large values for Lp, which corresponds to high 

values for effective and shear stresses, is associated with void sheeting and the 

formation of an intense slip-band resulting in local shear fracture.  

 
II.2. THE BASIS OF COD FRACTURE CRITERIA FOR MIXED MODE I/II CRACK 

INITIATION AND GROWTH IN THIN SHEET MATERIALS [40] 
 
II.2.1 Characteristic Crack Tip Parameters 
 

Following the process outlined in Section II.1 for plane strain, the crack tip fields 

are analyzed for plane stress problems with constraint conditions varying from small 

scale yielding to large scale yielding.  Through both analytical and numerical studies, it 

is shown that the crack tip stress and plastic strain along mode I and mode II crack 

growth directions can be characterized by a characteristic length parameter, Lp, and 

crack tip region constraint parameter, σm/σe.  

Furthermore, results indicate that σm/σe takes its maximum value along local 

mode I directions and Lp takes its maximum value along mode II directions.  Finally, 

results indicate that the characteristic crack-tip parameters, Lp and σm/σe, can be 

correlated to parameters such as crack opening displacement (COD) measured at a 

fixed distance behind crack tip. 

 
II.2.2 Plane stress mixed mode I/II crack tip fields characterized by a 
characteristic length and stress triaxility parameter  
 
 As in II.1, two characteristic parameters, LP and Am, are used to characterize the 

mixed mode I/II crack tip field variations along potential mode I and mode II crack 

growth directions for a specimen having plane stress conditions; see Figure 1 for 

graphical description. 

 As was noted in Section II.1.7, stresses in the crack-tip region are 

expected to be self-similar and follow the form noted in Eqs 14 and 15.  If one 

substitutes Eq. (14) into  stress-based equilibrium equations, it is easily shown that 
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where s=1/n+1 is material related constant.   Furthermore, along the local mode I and 

mode II directions, one can use the presence of a maximum in the opening stress 

( 0=θσ θθ dd ), and shear stress (Arθ=0) to obtain 
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in mode I direction, and the presence of a maximum in the shear stress to obtain 
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in mode II direction. 

 For plane stress problems, the ability of Am and Lp to characterize the crack tip 

fields under mixed mode I/II conditions will be demonstrated by describing results 

obtained using the finite element method for (a) an Arcan-specimen and  (b) a small-

scale yielding model.   

 

II.2.3. Finite Element Studies 
  

 Using the same material properties and procedures, as described in Section II.1.3, 

to analyze both a small scale yielding model (SSY) and the Arcan specimen geometry 

shown in Figure 25, computations were performed with small displacement theory 

implemented in the finite element code ABAQUS [33]. The results reported below are 

based on 4-node bilinear element with reduced integration, hourglass control and 

constant pressure capability. 
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 With regard to the effects of large deformation and their impact on results 

presented here, it is noted that these effects will be localized to positions very near the 

crack tip for all cases presented herein.  If specific information is required for position 

very close to the crack tip, then additional analyses would be required that focus on 

these regions to ascertain whether the fields vary significantly from trends identified in 

this work. 

 

II.2.4 Radial Variations along Local Mode I and Mode II Directions 
 

Studies of the angular variations of Lp and Am for both the Arcan specimen and 

the SSY indicate that (a) the direction corresponding to a maximum Lp or σe represents 

a possible direction for shear type fracture, and (b) the direction along which Am takes 

its maximum value corresponds close with the direction where the opening stress 

reaches its maximum tensile value, resulting in void nucleation in the area and mode I 

fracture.   

First, the radial distribution of effective stress is analyzed at two loading levels, 

loading when crack initiation occurred in Arcan specimen and also the maximum 

loading. Figures 26 shows the radial variation of Σe=σe/σ0 with normalized distance r/Lp 

along both the mode I and mode II directions, respectively, as well as the radial 

distribution for the mean stress Σm=σm,/σ0.  For all loading angles (Φ=00 to 900), the data 

for Σe falls on a single curve with amplitude, Ae, (the value of Σe at r/Lp=1), equivalent to 

a constant ξ=1.2, and independent of loading angle. The same conclusion was obtained 

by analyzing results from the SSY model. 

 Stress components, σrr, σθθ and σrθ, depends not only on normalized distance, r/Lp, 

but also on constraint and mode mixity. To observe the radial variation of stress 

components, each stress component is normalized by its value at r=Lp, denoted by Σij. 

The normalized stresses for all cases can be plotted with normalized distance r/Lp along 

the local mode I and mode II directions, respectively.   Results from all cases, including 

the Arcan specimen and the SSY model, show that radial variations of each stress 

component along local mode I and mode II direction collapse onto a single master 

curve, provided that the radial distance is normalized by the length scale LP.  
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Figure 27 displays radial variations of normal and mean stresses with normalized 

distance r/Lp in mode I direction for Arcan specimen at two loading levels. Along this 

direction, the shear stress is identically zero. The results clearly indicate that the normal 

stress data is collapsed onto a single curve when distance is normalized by Lp.  Along 

the mode II direction, radial variations for both the shear stress and mean stress with 

normalized distance, r/Lp
II are shown in Figure 27.  Results in Figure 27 show that along 

the mode II direction, shear stress has the form of Eq. (14), and the mean stress is 

nearly a constant over a distance of r=2Lp
II.  It is worth noting that the mean stresses 

shown Figure 27 are for Arcan specimen with Φ<650; for Φ>700, the normal stresses 

are close to zero.  

 

II.2.5 Relationship between Aij and Am 

   

Along either mode I or mode II directions, results in Figures 26 and 27 indicate 

that radial distances are adequately normalized by Lp.  However, if Lp and Am are to be 

used to characterize mixed mode I/II crack tip fields, the amplitude of the stress fields, 

Aij,, defined as value of σij/σ0 at r=Lp 
, must be a well-defined function of Am. Furthermore, 

at least along the directions corresponding to either local mode I or local mode II, the 

relationship Aij(Am) must be independent of mode mixity, specimen geometry and 

loading (or T-stress for SSY model). Finite element results for Aij (Am) along both mode I 

and mode II directions for the Arcan specimen and SSY model are presented in Figure 

28.  Results clearly indicate that the relationship Aij(Am) is geometry and loading 

independent, demonstrating that stress amplitudes can be uniquely characterized by 

Am. 
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II.2.6 Implication for Development of Stable Tearing Criterion 
 

In general, crack initiation and growth are assumed to occur when a combination 

of stress or strain components in either the mode I or mode II directions attain a critical 

value.  For both plane stress and plane strain conditions, our results have shown that 

the fracture event can be characterized by crack tip field parameters, Am and Lp, as  

 

 ( ) antconstA,LF m
p = .         (19) 

 

As an example, the mixed mode COD fracture criterion can be explored through 

correlation of COD value to the characteristic crack tip stress field parameters, Am and 

Lp.  Defining COD as the magnitude of the crack opening displacement measured at 

1mm behind crack tip for all models considered in this work, Figure 29 presents the 

numerically predicted COD/Lp is related to mA  for both the mode I and mode II 

directions, respectively.  If mode I type fracture is the dominant fracture mechanism 

(Fig.29a, β < 700 for Arcan specimen), COD is a function of Lp and Am,  

 ( )I
mIp

I

Ag
L

COD
= .          (20) 

Thus, general form of COD fracture criteria for crack growth along the mode I direction 

is  

 ( ) I
I
mI CACODF =, .           (21) 

where CI is material constant. The form of Eq. (20) depends on a special stress 

combination for crack growth in mode I direction. 

 It is noted that the prediction of the direction and onset of crack extension is 

relatively insensitive to the distance behind the crack tip.  For example, the investigators 

have successfully used distances between 0.50mm and 1.50mm to predict experimental 

results; other distances may also be effective for predictions, though the investigators 

have not used other distances in their studies. 

Along the Mode II direction, COD is a function of Lp and Am parameters and has 

the form , i.e. 
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 ( )II
mIIp

II

Ag
L

COD
= .          (22) 

Thus, a general form for a COD fracture criteria for crack growth along the mode II 

direction is 

 ( ) II
II
mII CACODF =, .         (23) 

where CII is material constant. The form of Eq. (22) depends upon the combination of 

crack tip field parameters in mode II direction. In particular, for mode II fracture 

observed in the Arcan specimen, which occurs when β>700, Am
II is close to zero.  Thus, 

gII(Am
II) in Eq. (22) is nearly a constant (Fig.29b) and the general form for a plausible 

COD fracture criterion for crack growth in the mode II direction is, 

 COD = constant.  

        (24) 

II.2.6 Concluding Remarks 
 

Results from detailed finite element and theoretical analysis for the Arcan 

specimen and SSY model are in excellent agreement with FE stress distributions for 

models ranging from small scale yielding to large scale yielding.  Specifically, the results 

indicate that along potential mode I and mode II crack growth directions, (a) the mixed 

mode I/II stress fields can be collapsed onto a single curved when Lp normalizes 

distance from crack tip and (b) the magnitude of the stress field depends solely on mA . 

Thus, the characteristic length scale, Lp, sets the size scale over which large stresses 

and strains develop and Am scales the magnitude of the crack tip stress components.  

 
II.3. Basic studies of ductile failure processes and implications for fracture prediction 
 
II.3.1. Background 
 

Fracture of ductile materials has frequently been observed to result from the 

nucleation, growth and coalescence of microscopic voids. Experimental and analytical 

studies have shown that two parameters ⎯ the stress constraint factor and the 

effective plastic strain ⎯ play a significant role in the ductile failure process. 
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Experimental and theoretical results from previous sections as well as from other 

authors suggest that these two parameters are not independent of each other at failure 

initiation.  

Hancock and Mackenzie [41] experimentally studied the mechanisms of ductile 

failure in high-strength steels subjected to multi-axial stress states and evaluated the 

effect of stress constraint factor on the average plastic strain to failure initiation by use 

of the Bridgman’s equation. Subsequently, Walsh et al [42] investigated the ductile 

fracture of 2134 type Al alloys.  Figure 30 shows a typical experimental relationship 

between plastic strain and constraint.  As shown in Fig. 30, their results indicate that 

rupture ductility decreases monotonically with increasing levels of stress constraint.  For 

a given stress state, the effective plastic strain at failure initiation should be specified 

uniquely by the relation of effective plastic strain at failure initiation to a measure of 

constraint.  In this regard, numerical results also indicates the stress constraint plays a 

key role in the ductile-brittle transition in small scale yielding [43]. 

A recent comprehensive review paper on ductile fracture modeling by Thomason 

[24], which utilizes extensive experimental, theoretical and computational results 

obtained both by the author and recognized researchers throughout the world, provides 

a clear framework for ductile fracture modeling.  In his work, Thomason provides 

convincing evidence that (a) crack extension during the void-coalescence process is by 

inter-void matrix failure at limit load, (b) theoretical formulations emphasizing volumetric 

dilation as the void coalescence criterion are inconsistent with a wealth of experimental 

evidence obtained from SEM and micro-structural observations of ductile fracture and 

(c) numerical simulations of the void coalescence process, where uniqueness issues 

may arise due to the plastic velocity field, may limit the applicability of typical finite 

element methods.  Also, experimental evidence [24] indicates that the overall 

macroscopic direction of crack extension is a function of the local field quantities and 

not the details of the void nucleation site distribution. 

Utilizing the experimental work noted above and by making use of a unit cell 

model, the enclosed work will show that two parameters⎯a stress constraint factor 

(σm/σe) and the effective plastic strain (εpc) ⎯ provide the basis for developing a 

framework to characterize the effect of stress constraint on ductile failure of materials. 
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This methodology is based on the experimental evidence that the effective plastic strain 

at failure initiation has a one-to-one relationship with the stress constraint.  In Section II 

and the Appendix, it is shown that the relationship shown in Fig. 30 for σm/σe and εpc 

leads to a failure initiation model indicating that the effective stress reaches its 

maximum under constant constraint loading conditions.  Section III shows detailed 

numerical analyses based on a three-dimensional unit-cell model to assess the viability 

of the proposed failure initiation model.  Based on the numerical results, a stress 

constraint-based failure criterion has been developed. 

 

II.3.2 A methodology for failure initiation study 
 

As shown in Figure 30, the effective plastic strain at failure initiation, Epc, is a 

function of stress constraint, where constraint is defined by Am. 

 

For ductile materials, suppose that f  is the void volume fraction in the material, 

the definitions of average stress and strain are as follows [44] 

ijε =
V
1 ( )∫ +

A

ijji dAnunu
2
1         (25) 

ijσ =
ij

W
ε∂

∂           (26) 

where V  is the total volume of the cell model (matrix+void), A  is the total area of outer 

surface of the model, and in  is the unit outward normal on A , 
•

W  is the strain energy 

rate of the model. The corresponding effective stress and effective plastic strain eσ  and 

pε . 

When f =0, the curve of eσ  versus Epc will be independent of stress constraint 

Am
i.  In fact, taking into account the effect of impurities, inclusion separation in material, 

especially under finite deformation, the deformational behavior of porous material is a 

strong function of stress constraint; volumetric deformation is dominant under high 

stress constraint, while the shape change is dominant under lower stress constraint. 
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Because of micro-structural variation of material under different stress constraint, some 

of the material properties will not keep constant under different levels of stress 

constraint. For instance, eσ  versus Epc will have different relationships for different 

levels of stress constraint.  If the stress constraint Am
i is constant throughout the loading 

history, then the relationship between effective stress and effective plastic strain is 

illustrated in Figure 31 for three different values of constraint. 

For voided materials, the initial void volume fraction in the matrix is defined as fo. 

For voided materials, the macroscopic (some refer to these as mesoscopic) strains and 

stresses in the study of the cell model (matrix +void) are defined using terminology in 

previous work [44].  Numerical studies have shown that the relationship of macroscopic 

effective stress σe to macroscopic effective plastic strain Ep will be a function of 

constraint [45].  Furthermore, experimental results [41] for notched specimens for three 

low-alloy steels show that the critical effective plastic strain, Epc, at failure initiation is a 

monotonically decreasing function of the level of constraint, as shown in Figure 30, 

where the constraint parameter is Am = σm/σe. 

 

II.3.3. A unit-cell model and numerical results 
 

The unit-cell model of a porous ductile material to be studied here, as shown in 

Figure 32, is defined by a three-dimensional periodic array of spherical microvoids in an 

elastic, strain-hardening plastic matrix, described by Eq (27).  
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where σy is the initial uniaxial yield stress, E is the Young’s modulus and n  is the strain 

hardening exponent for 2024-T3 aluminum. 

Figure 33 shows a one-eighth, three-dimensional model for a unit cell, respectively.  

In this work, initial void volume fractions in the range 0.00125 < fo < 0.1000 were 

modeled.  All 3D analyses were performed using (a) the commercial code, ANSYS, 

Version 5.7, and (b) the large deformation formulation in ANSYS for both rotations and 
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strains.  Detailed convergence studies were performed for all initial void volume 

fractions using four separate finite element models to determine the appropriate 

element size on the void boundary and throughout the volume.  The convergence 

studies indicated that a total of 3740, ten-node tetrahedral elements with 6426 nodes 

were sufficient for the 3D analyses.  Tolerances used in ANSYS to determine 

convergence of the solution during the loading process were set at 0.0001 for the ratio 

of the residual in total force (moment) to the total force (moment). 

Boundary conditions for the analysis include (a) symmetry displacement 

conditions ux1 = 0 in plane of x1 = 0, ux2 = 0 in plane of x2 = 0, ux3 = 0 in plane of x3 = 0) 

and (b) uniform displacement loading along remaining surfaces ux1 = Cx1 in plane of x1 = 

Lo, ux2 = Cx2 in plane of x2 = Lo, ux3 = Cx3 in plane of x3 = Lo).   

By varying the values for Cx1, Cx2 and Cx3, the values of σm, σe and Am applied to 

the unit cell are computed by (a) integrating the tractions on the surfaces xi = Lo to 

obtain the force vectors, (b) computing the average surface tractions using the surface 

areas and (c) using the resulting stresses to determine the average applied values for 

σm, σe and Am.  The values for the applied stresses varied over a wide range given by 

the inequalities 

 0 < σm < 1200Mpa 

 50Mpa < σe < 590Mpa  

 0 < Am < 10 

 Each finite element analysis is performed under displacement-control.  The 

boundaries are displaced uniformly and monotonically throughout the loading process.  

In addition, all displacements are increased in the same proportion throughout the 

loading process, so that a proportional displacement loading process was used for all 

finite element analyses. 

For all cases, the condition of link-up is defined as the instant when the effective 

plastic strain contour εp = εp
c intersects both the void boundary and a symmetry 

boundary for a neighboring void.  To determine when a contour having the pre-specified 

εpc continuously extends between the void boundary and the neighboring region, the 

solution at incremental displacement steps is stored and evaluated during post-

processing.  By symmetry, the contour will extend to each neighboring void also.  Once 
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the appropriate loading step is determined, the average applied values for all stress 

components at incipient void link-up are computed, including σm, σe and Am. 

 For cases approaching pure shear (Am→0), it is noted that large distortions of the 

void occurred, resulting in collapse of the void during the loading process.  In these 

cases, localization of effective plastic strain was observed along a well-defined direction 

and link-up was defined in the manner noted above.  Since void boundary contact was 

not considered in our analyses, it is important to note that (a) void boundary contact 

only occurred for low constraint and (b) link-up occurred prior to void boundary contact 

for almost all of the low constraint cases (Am ≥ 0.01) considered.  For those few cases 

where void contact occurred prior to link-up conditions, our studies indicate that using 

contact to define link-up would have negligible effect on the results. 

For specific values of link-up plastic strains, εpc
i, and a range of applied 

displacement boundary conditions, Figure 34 show the values of (σm,σe) that were 

applied to the region at link-up for 3D conditions and fo = 0.005, 0.020 and 0.080.  The 

values were selected to span the range measured by the investigators in 2024-T3 

aluminum (f0 = 0.035) and 2524 aluminum (f0 = 0.014).  

As is apparent in the numerical results shown in Figure 34, for each εpc there are 

several values of (σm,σe) obtained by the simulations that result in link-up to the 

neighboring void.  Since previous experimental evidence (e.g., see Fig. 30) suggests 

that a unique, monotonic relationship exists between Am and εpc, an approach is needed 

to determine whether the simulations contain the requisite information for (a) predicting 

void link-up while simultaneously resulting in a monotonic Am-εpc relationship.  

Inspection of the data in Figures 34 suggests that the simulation results for each 

value of fo are bounded by an envelope function.  In each case, the simulation results 

for each εpc
i construct the envelope function since they are individually tangent to the 

envelope.  Conceptually, the envelope function provides a unique combination of stress 

values for each value of fo.  Furthermore, by construction each value on the envelope is 

uniquely related to a specific effective plastic strain, εpc. 

To investigate the relationship between constraint and εpc, for the (σm,σe) values 

represented by each envelope function the boundary displacement iu in Equation (25) is 
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used to calculate the average effective plastic strain.  The resulting relationship between 

average effective plastic strain εpc and constraint Am for the 3D models is shown in 

Figure 35.   

The results in Figures 34 and 35 demonstrate that each envelope function 

corresponds to a monotonic relationship between effective plastic strain and constraint 

Am that is fully consistent with experimental evidence such as shown in Figure 30; εpc 

decreases with increasing constraint.  Figure 36 presents the locus of envelope values 

(σm, σe) at void link-up for each fo. 

The results in Figures 30-36 suggest that there are two interpretations of the 

proposed local void link-up criterion.  First, for each void volume fraction fo, there exists 

a locus of values for (σm, σe) that correspond to local stress conditions resulting in void 

link-up, where the effective plastic strain at void link-up varies with the corresponding 

constraint, Am. 

Second, consistent with the discussion given above, it is shown that the locus of 

values for (σm, σe) is consistent with the achievement of a maximum in the effective 

stress under a constant level of constraint, Am.  Considering the effective plastic strain 

corresponding to the maximum effective stress as the plastic strain at the initiation of 

void link-up for each level of constraint, then the effective plastic strain at void link-up 

under different stress constraint will decrease monotonically with increasing constraint.  

These concepts can be formulated into a void link-up criterion: 

 

Under a constant level of constraint, failure initiation occurs in a 

ductile material when the effective stress reaches its maximum in the 

loading history.  
 

It is noted that this criterion is consistent with both experiment results (41,42] and 

numerical predictions [45]. 

Furthermore, as shown in Figure 37, it is possible to demonstrate that, if one 

assumes a one-to-one relationship F(Εpc, Am, f0) between the critical plastic strain in the 

remaining material and macroscopic stress constraint Am such as shown in Figs 30, 31 

and 35, then there exists a unique functional relationship H(Am, σe, f0) at failure initiation. 
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Conversely, it can be shown that if one assumes there exists a unique functional 

relationship H(Am, σe, f0) at failure initiation and a monotonic relationship between εp and 

σe for each void volume fraction and constraint.  This implies a unique functional 

relationship F(Εpc, Am, f0) that is similar to the form shown in Figure 1.   

 

II.3.4 Concluding Remarks 
 

Based on previous experimental and analytical results, a methodology for the 

prediction of three-dimensional ductile fracture in materials.  Numerical analyses of a 

three-dimensional unit cell model were conducted to investigate the effect of stress 

constraint on failure initiation.   

Since void growth is the established mechanism for crack extension in such 

material systems, and the initial volume fraction of impurities with weak interfaces is a 

reasonable estimate for fo, the void link-up relationship H(Am, σe, f0) obtained through 

detailed numerical analyses demonstrates that σe(Am) at the onset of crack extension 

for a given fo.  Furthermore, since the crack opening displacement, COD, at any position 

behind the crack tip is the integrated effect of the elastic-plastic crack tip strain fields 

and it has been shown that εp(σe(Am,fo)), then in regions where plastic deformation is 

dominant a viable COD fracture criterion that is consistent with the void link-up concepts 

outlined in this work is COD(Am; fo).  Here, it is expected that the critical value of COD 

will decrease with increasing constraint. 
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II.4 Stress and Deformation fields Comparison between Flat and Slant Cracks under Remote 
Mode I Loading 

 

II.4.1. Background 
 

A phenomenon observed in thin sheets of many ductile materials is the transition 

from an initially planar, flat crack in the L-T orientation into a through-thickness slant 

crack surface under Mode I loading.   

Lloyd and Piascik [46] analyzed the stable tearing process in 2.3mm sheets of 

2024-T3 aluminum alloy M(T) specimens using fracture surface micro-topography 

reconstruction techniques. Their results show that, the L-T orientation (i.e., the load was 

applied in the longitudinal or rolling direction and the crack was in the transverse 

direction) exhibit a high degree of slant fracture. Large shear lips form along both sides 

of the specimen and grow increasingly larger during the stable tearing process. The 

increase in the slant angle with increased crack length suggests the presence of a 

Mode III deformation component associated with large amounts of slant fracture [46].  

In 1997, Manoharan [47] presented experimental data for a series of combined 

mode I-mode III fracture toughness tests conducted on a wide range of materials, 

including steels, aluminum alloys, metal matrix composites, ceramics and polymers. 

Choosing the J-integral as the most appropriate parameter to analyze the fracture of the 

more ductile materials, his results show that some ductile materials have reduced 

fracture toughness for a crack angle of 45°. 

In an effort to understand this process, a detailed three-dimensional finite 

element analysis is performed, with emphasis on determining the CTOD variation, radial 

and angular variations of constraint, mean stress and effective stress at different 

through-thickness locations for both (a) a single edge flat crack and (b) a slant crack in 

an Arcan specimen.  Figure 38 shows the geometries of both a flat and slant crack. 
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II.4.2. Mesh design for Arcan specimen and test fixture 
 

The Arcan fixture and test specimen under investigation are shown in Figure 39.  

The fixture was modified for stable tearing tests to include a number of bolts and 

hardened drill rod inserts for stiffening and strengthening of the specimen-fixture 

connection.  

The loading fixture shown in Fig. 39 consists of a pair of grips. It is made of 15-

5PH stainless steel, with a thickness of 19mm (0.75in). The test specimen shown in Fig. 

2(b) is made of 2024-T3 aluminum and has a thickness of 2.3mm (0.09in). In the fixture 

region, the steel has a Young’s modulus, E = 207GPa (30.012E6 psi), a Poisson’s ratio, 

ν = 0.3, an initial yield stress, σ0 = 1723.8MPa (250ksi). In the specimen region, the 

aluminum alloy has a Young’s modulus, E = 71.71GPa (10.35E6 psi), a Poisson’s ratio, 

ν = 0.3, and an initial yield stress, σ0 = 358.5MPa (52ksi). Both the 15-5PH steel and 

2024-T3 aluminum exhibit strain hardening behavior and this is included in the 

simulations.  In the finite element simulation both materials are modeled with an 

isotropic strain hardening behavior.  However, the 15-5PH material did not yield during 

the analyses, so only the elastic response was required.. 

 In all analyses, the X-axis represents the global x-direction (parallel to the flat 

crack growth direction). Y is the global y-direction which is perpendicular to the flat 

crack surface while Z is the global z-direction (parallel to the crack front of the flat case). 

It should be noted that for the flat crack, the global and local coordinate systems 

coincide.  

 It is noted that Deng and Newman [48] argued that since the fixture and pins in 

an Arcan test are relatively rigid compared to the specimen, the connection between the 

fixture and specimen can be approximated by a rigid and continuous joint. Thus in the 

finite element analysis, the specimen-fixture system is treated as one continuous solid 

with two regions of different thickness and material properties. Also due to the fixture 

rigidity, the effect of omitting the loading holes on the load transfer to the specimen is 

expected to be insignificant. 
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II.4.2.1 Flat Crack 
 

Figure 39 shows both the overall Arcan specimen mesh and the focused crack 

tip mesh.  For the flat crack case, only half of the geometry is modeled due to symmetry 

about the mid-plane.  A range of mesh density values is used to assess convergence.  

Here, convergence was assumed when the stresses and strains varied by no more than 

3% as the mesh was refined.  In this work, the converged flat crack mesh (Fig. 46) 

consists of 37260 eight-node brick elements with a total of 42504 nodes.  The eight-

node brick element used has 3 degrees of freedom at each node, namely translations in 

x, y and z directions. 27660 elements are used in the specimen region and 9600 

elements in the fixture region. The Arcan test specimen mesh consists of 10 through 

thickness layers.  Smaller elements, on the order of 0.0218mm (0.00086in), are 

distributed on the first circular ring around the crack front. Further away from the crack 

front, coarser elements are used for the remaining 49 circular rings that make up the 

focused mesh.  

Loading of the specimen is achieved by specifying a displacement loading in the 

y-direction (Uy = 0.116mm) at the upper loading nodes set. The upper loading nodes lie 

along the same through thickness line, representing an approximation for the Mode I 

loading hole location. The corresponding nodes at the bottom are fixed in all directions 

(Ux = Uy = Uz = 0).  Symmetry about the mid-plane requires that all nodes lying on that 

plane to be fixed in the z-direction (Uz = 0). To eliminate rigid body rotation, a node is 

fixed in the x-direction. For convenience, the mid-plane node of the upper loading nodes 

set is chosen for that purpose.    

 

II.4.2.2 Slant crack mesh 
 

The slant crack configuration and associated coordinate systems is shown in 

Figure 40. For the slant case, X′ is the local x-direction (parallel to the slant crack 

growth direction). Y′ represents the local y-direction (perpendicular to the slant crack 
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surface). Z′ is the local z-direction (parallel to the crack front of the slant case).  The 

slant angle, α = 380, is based on previous experimental data [49].  

The finite element mesh for the slant crack case is shown in Figure 41.  As with 

the flat crack, convergence studies were performed to verify that the field quantities 

were accurately estimated. The mesh used in this work is composed of 74520 eight-

node brick elements with a total of 81516 nodes. A total of 55320 elements are used in 

the specimen region while19200 elements are used in the fixture region. The Arcan test 

specimen mesh consists of 20 through thickness layers. The layer interfaces are 

located at distances of Z = 0, 0.2635mm, 0.4727mm, 0.6387mm, 0.7704mm, 0.875mm, 

0.958mm, 1.024mm, 1.076mm, 1.118mm, and 1.15mm. For the slant crack case 

boundary conditions, the same displacement loading used for the flat crack case is 

applied at the upper loading nodes set while the corresponding nodes at the bottom are 

fixed in all directions. To eliminate any possible rigid body rotation, the mid-plane node 

of the upper loading nodes set is fixed in the x-direction. It should be noted that for the 

slant crack there is no symmetry condition about the mid-plane, in fact anti-symmetry 

conditions exist about that plane. Thus for the slant case the whole geometry is 

modeled.  

 

II.4.3 Definition of Crack Opening Displacement 
 

The crack opening displacement vector (CTOD or COD) is defined in this study 

as v = δx ex + δy ey + δz ez.  In this work, all unit vectors are defined in the local 

coordinate system.  Hence, δx is the COD local in-plane shearing or Mode II component, 

δy is the local opening or Mode I component and δz is the local tearing (out-of-plane 

shearing) or Mode III component. ex, ey and ez are the base vectors along the local x, y 

and z-directions respectively. δx is obtained by subtracting Ux
+ - Ux

- while δy = Uy
+ - Uy

- 

and δz = Uz
+ - Uz

-. Where Ux
+, Uy

+ and Uz
+ are the displacements in the x, y and z 

directions at a certain distance behind the crack front at the crack top surface. Ux
-, Uy

- 

and Uz
- are the corresponding displacements at the crack bottom surface. The 

magnitude of the CTOD vector in this study is referred to as the total CTOD, δt, where δt 

= (δx
2 + δy

2 + δz
2)1/2. 
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II.4.4 Results 
 

Figure 42 presents the COD variations at both the mid-plane and front surfaces 

for slant crack specimen.  Figure 43 presents a direct comparison of total COD for both 

flat and slant crack specimens.  Figure 44 presents the radial distribution of constraint 

along an angle θ = 0° with the crack front for both the flat crack and slant crack 

specimens.  Figure 45 shows a comparison of the angular distributions in constraint for 

both the flat crack and the slant crack along a radial distance of r = 0.272mm from the 

crack front.  This figure shows that constraint values are higher at the mid-plane for a 

flat crack than for a slant crack of the same length.  At the free surface, both flat and 

slant cracks have similar levels of constraint, where the surface constraint values are 

considerably lower than at the mid-plane. 

 

II.4.5 Concluding Remarks 
 
 First, it is important to note that this study is directed towards understanding the 

crack tip fields for both flat and planar cracks under load.  As such, the information 

obtained in this work is related to the "crack tip driving force", and not the functional 

form for a critical crack tip parameter.   

Since it is generally believed that higher constraint suggests lower critical CTOD 

values, while lower constraint corresponds to higher critical CTOD values, the results of 

the current study show that  

(a) for a slant crack loaded under pure Mode I remote loading, a significant local 

tearing COD component suggests that a slant crack promotes mixed mode I/III 

conditions. 

(b) for a slant crack, the total CTOD is almost the same at the mid-plane and 

front and back surfaces. Actually, the total CTOD of the slant crack is slightly larger at 

the front and back surfaces than at the mid-plane, especially near the crack front.  

(c) for a flat crack under pure Mode I remote loading, the total CTOD at the mid-

plane is greater than at the front and back surfaces just behind the crack front, 
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(d) the mid-plane constraint is higher for a flat crack than for the slant crack, 

implying that flat cracks would tend to grow initially at the mid-plane, a phenomenon 

known as crack tunneling that is commonly observed in specimens undergoing planar 

fracture, 

(e) a through-thickness variation of constraint exists for both flat and slant flaws, 

with the highest constraint at the mid-plane, providing the basis for the crack tunneling 

behavior observed in both flat and slant crack. For the slant crack, and since the 

through thickness variation is less than that of the flat crack, it is possible to say that 

tunneling would probably be less severe for the slant crack case,  

(f) the increased effective stress, especially close to the crack front for the slant 

case, seems to suggest that for a slant crack, the effective stress might be considered 

as a driving force. The fact that the effective stress is almost the same at the specimen 

mid-plane and front and back surfaces for the slant crack suggests, that a shearing type 

of failure that is relatively uniform along the crack front is promoted 

 

III. SIMULATION ALGORITHM DEVELOPMENT FOR THREE-
DIMENSIONAL FRACTURE PREDICTIONS ALONG GENERAL 
FRACTURE SURFACES 
 

III.1 General remarks 
 
 Based on the need to focus on the development of a fully three-dimensional 

fracture criterion along general surfaces, the following decisions were made. 

1. A single program, ANSYS, was designated for PRE-processing of the input data 

and POST-processing of the output data. 

2. the input/output procedure for ANSYS was completely re-written to correct 

numerous errors and a fully documented and verified interface written for ANSYS 

and the three-dimensional FE software package, CRACK3D 

3. A USER MANUAL for CRACK3D with ANSYS has been written and we now are 

in the second draft of this manual. 

4. A wide range of simple finite element analyses were performed with (a) 

CRACK3D and ANSYS and (b) ANSYS by itself.  The results for all field 
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parameters were compared to document that the codes give nearly identical 

answers.  Except for quantities near zero, all field variables were within 1%. 

5. A methodology for using CRACK3D with ANSYS on a PC so that code can have 

up to 1.5 GB of RAM was developed, since ANSYS was unable to resolve 

problem. 

6. A procedure for automatic re-meshing around flaws so that we can do full, 3D, 

unconstrained crack growth analyses, has been developed and is currently 

undergoing final testing. 

 

III.2 General Structure and Capabilities of CRACK3D 
 
 An outline describing the structure of CRACK3D is shown in Figure 46.  The 

CRACK3D code uses small or large deformation theory to model (a) elastic-plastic 

material response, (b) two or three-dimensional structures and (c) general three 

dimensional crack growth with user-defined crack growth criteria and tetrahedral 

elements. 

 

III.3 Data transfer between meshes after crack growth 
 

The transfer of history-dependent data from the old mesh to a new mesh 

includes  two  procedures.  The  first procedure is designated state variable smoothing.  

The  second  procedure is termed variable mapping.  A least  square smoothing  

method  proposed  by Hinton and Campbell [50] is used to perform state variable 

smoothing of variables such as stress and strain.  In the smoothing scheme, nodal 

values are determined by minimizing the mean square difference between the 

interpolated values and the given elemental values. For the tetrahedral element with 

four nodes, we have 
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where N is the total number of elements in the chosen region (local or global). iϕ  is  the  

shape function of an element. iε  is  the nodal value to be  calculated and jη  is the  

value at the integrated point.  The function, I, is minimized by taking the stationary value 

with respect to iε , i.e. 

 

                                  0=
∂
∂

i

I
ε

         for i=1, 2, 3, 4,…, n                     (29) 

where n is the total number of nodes in the chosen region. So, we have 
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iε  can be calculated by solving the system of equations.   

After determination of the state values at the current nodal locations, the values 

of the state variables are calculated at the integration points in the new mesh to 

complete the variable mapping process.  Note that this process is required since the 

new mesh may have different element sizes and nodal locations, especially in the new 

crack tip region. 

Suppose the coordinates of the new integration point is (x,y,z). Then,the local 

coordinates (s, t, u) in the  old element  corresponding to the  global  coordinates (x, y, 

z)  can be  calculated according to the following equations. 
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 So the state value ε  of the new integration point is calculated as follows: 
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III.4 Re-mesh for the 3D crack growth process 
 
III.4.1  Local region re-mesh  
 

To perform re-meshing, one is required to re-mesh both locally and globally.  For 

local re-meshing, we first determine the geometric topology of region Ω  on the base of 

initial mesh. Suppose ΩS  is the set of all boundary surfaces of Ω , ΩL  is the set of all 

boundary lines of all boundary surfaces of Ω  

ΩS ={ }Ω∈ii SS ,  

ΩL ={ }Ω∈ii ll ,  

 

kΩ  (k=1, 2, …n) is the sub-region around each crack front, whose size is controlled by 

the parameter R, where n is the total number of crack fronts in the structure. 

 

RΛ  is the remnant of region Ω  subtracted with kΩ  (k=1, 2, …n), thus 

Ω = RΛ ∪ 1Ω ∪ 2Ω ∪ …∪ nΩ  

 

Next, we determine the geometric topology of region RΛ  based on the initial mesh and 

the sets of ΩL  and ΩS . Suppose ΛS  is the set of all boundary surfaces of RΛ , ΛL  is the 

set of all boundary lines of all boundary surfaces of RΛ  

ΛS ={ }Rii SS Λ∈,  

ΛL ={ }Rii ll Λ∈,  

 

At this point, we investigate the relationship of sub-regions kΩ  (k=1, 2, …n) and 

determine if any of the sub-regions intersects. If an intersection has occurred, we 

combine those sub-regions into a large sub-region. 
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After completing this process, we suppose there are m  sub-regions kℜ  (k=1, 2, … m ) 

constructed after combination among the set of iΩ  (i=1, 2, …n), accordingly 

Ω = RΛ ∪ 1ℜ ∪ 2ℜ ∪ …∪ mℜ  

We then determine the geometric topology of region kℜ  (k=1, 2, … m ) based on the 

initial mesh and the sets of ΩL  and ΩS . Suppose 
k

Sℜ  is the set of all boundary surfaces 

of kℜ ,
k

Lℜ  is the set of all boundary lines of all boundary surfaces of kℜ , which are 

expressed mathematically 

 

k
Sℜ ={ }kii SS ℜ∈,         (k=1, 2, … m ) 

k
Lℜ ={ }kii ll ℜ∈,         (k=1, 2, … m ) 

 

kℜΘ  is the set of all boundary surfaces of 
k

Sℜ  
kℜ∇  is the set of all boundary lines of all 

boundary surfaces of 
k

Lℜ  (k=1, 2, … m ) which will be re-meshed 

 

kℜΘ =
k

Sℜ −
k

Sℜ ∩ ΛS       (k=1, 2, … m ) 

kℜ∇ =
k

Lℜ −
k

Lℜ ∩ ΛL       (k=1, 2, … m ) 

 

To perform the re-meshing, we propose to use a parametric transformation, 

mapping 3D physical surface into parametric plane (u, v), re-meshing in the parametric 

plane (u, v), and eventually doing the inverse transformation to map the surface from 

parametric plane to physical surface. 

After all lines in 
kℜ∇  and all surfaces in 

kℜΘ  have been re-meshed, we then re-

mesh the sub-region kℜ  (k=1, 2, … m ). 

Next, we combine the new mesh in regions kℜ  (k=1, 2, … m ) and the old mesh 

in region RΛ .  Taking account of the old mesh in region RΛ , renumber the new nodes 
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and elements created in regions kℜ  (k=1, 2, … m ). Both the old mesh in region RΛ  and 

the new mesh in regions kℜ  (k=1, 2, … m ) construct the current mesh. 

Then, data transformation from old mesh to current mesh is performed as per 

section V.1.. Note that this process will be done only in the regions kℜ  (k=1, 2, … m ), 

with data in the region RΛ  unchanged.  Finally, geometric topology of Ω  is updated for 

use in the next re-meshing process. 

 
III.4.2 General methods developed in our study 
 

When generating a mesh along crack fronts, there will be two or more nodes with 

the same coordinates on crack surfaces. This problem has been discussed in literature 

[51]. Unfortunately, the method proposed in [51] is not a general method for nodes on 

boundary lines of crack surface.  Based on our study, a more general method has been 

developed and implemented in CRACK3D. 

 

Node selection on lines 
Without loss of generality, suppose segment GH is on the current generating 

front, which requires connection to a companion node on another line.  Suppose node A 

and node B have the same coordinates and are located on different boundary lines and 

node B lies on the same side of segment GH, as shown in Figure 47.  Nodes C and D 

are the two neighbors of node A and nodes E and F are the two neighbors of node B.  

The following procedure was developed to select a node from nodes A and B 

which will be connected to segment GH. 

 

1. Define the following unit vectors originally from node A and node B 

1AV  is unit vector from A to C 

2AV  is unit vector from A to D 

1BV  is unit vector from B to E 

2BV  is unit vector from B to F 

2. Perform the dot product between two unit vectors 
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BjAi VV •              (i=1, 2.   j=1, 2) 

3. Determine the vectors having maximum value for the dot product and suppose 

that BFAD VV • =max { BjAi VV •    i=1, 2.   j=1, 2} 

4. Establish outward-normal unit vectors AV  and BV  at node A and node B that are 

perpendicular to segments AD and BF, respectively. 

5. Perform the dot products 

AMB VV •  

BMB VV •  

where MBV  is unit vector from middle point of segment GH to node B (or node A)  

6. Then, if AMB VV •  > BMB VV • , node A is selected to connect to segment GH.  

However, if AMB VV •  < BMB VV • , then node B is selected to connect to segment GH 

 

Node selection on crack surfaces 
Without loss of generality, suppose a facet CDE is on the current generating front 

which is looking for a node to be connected, suppose node A and node B have the 

same coordinates and on different crack surfaces and node B lies on the same side of 

facet CDE, as shown in Figure 48.  

The following procedure was developed to select a node from nodes A and B 

which will be connected to facet CDE.  

1. Define the element neighbor of node A on the boundary surface Ψ as each 

triangular element on surface Ψ connecting to node A  

2. Suppose node A has NA surface element neighbors, node B has NB surface 

element neighbors. 

3. Define unit vector AjV  as the out-normal unit vector of boundary surface node A 

lies that is perpendicular to the jth element neighbor of node A.  

4. Define unit vector BjV  as the out-normal unit vector of boundary surface node B 

lies on which is perpendicular to the jth element neighbor of node B. 

5. Perform the dot product between each two unit vectors 

BjAi VV •       (i=1, 2,… NA.   j=1, 2,… NB) 
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6. Determine the vectors having minimum value for the dot product and suppose 

BlAk VV • =min { BjAi VV •     i=1, 2,… NA.   j=1, 2,… NB } 

7. Performing the dot products and doing comparison 

AkMB VV •  

BlMB VV •  

where MBV  is unit vector from center of facet CDE to node B (or node A)  

8. Then, if AkMB VV •  > BlMB VV • , node A is selected to connect to facet CDE 

9. However, if AkMB VV •  < BlMB VV • , then node B is selected to connect to facet CDE 

 

III.5 Re-meshing Process 
 

To perform the re-meshing outlined above, the following subroutines have been 

completed to make the process fully automatic for general 3D mesh regeneration.  It is 

noted that the decision has been made to use tetrahedral elements throughout the re-

meshing region. 

1. software to collect topologic information of geometry for each sub-region based 

on the global structural topologic information of geometry, determining the 

property of each boundary surface and indicating which one needs to be re-

meshed and which one does not need, 

2. software to collect the surface triangular elements on each boundary surface of 

the sub-region under consideration, 

3. software to determine the outer loop and the interior loops (if existing) on each 

boundary surface of the sub-region under consideration. 

4. software to modify the loops on each boundary surface of the sub-region taking 

account of the change of topology due to crack propagation, 

5. software to investigate the boundary lines each loop consists of, and determining 

the property of each boundary line. (e.g. the lines on the interface will not be 

remeshed ) 

6. software to re-mesh the loops on each boundary surface of the sub-region based 

on the properties of all boundary lines. 
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In addition to these subroutines, CRACK3D has been modified so that the 

following tasks will be automatically performed after each new loading increment is 

applied and the fracture criterion is satisfied so that the crack is required to propagate in 

a specific direction. 

1. Determine the local region to be re-meshed around the new crack front  

2. Investigate the feature of the local region (e.g. boundary surfaces, 

boundary lines, interface with the remainder)  

3. Re-mesh the local region based on mesh density distribution and 

boundary features of the local region.  

4. Convert the database from old mesh to new mesh. 

5. Delete the old mesh in the local region, re-order the node number and 

element number and optimize the database. 

6. Due to the errors induced in the process of data conversion and crack 

propagation, check the equilibrium equations and find out the current non-

equilibrium nodal force. Invoke a local sub-iteration loop to eliminate the 

non-equilibrium nodal force. 

It is noted that all the calculations will be fulfilled in the new mesh until the next re-mesh.  

Figure 49 shows the results of the process described above, where the crack tip region 

is identified, extracted, re-meshed and then re-inserted into the unaltered "far-field" 

mesh.  It is noted that the outer boundary of the local region (i.e., the interface surface) 

is unaltered during the re-meshing so that the reinsertion process can be completed 

without any alterations to the "far-field" mesh. 

 



 45

III.6 Optimization of Mesh in Three-Dimensional Domain after Re-meshing 
 

The goal of mesh optimization is to locally and globally improve the quality of the 

mesh by eliminating elements that have a poor aspect ratio or other dimensional 

defects. To investigate and evaluate mesh quality, an element quality factor is defined, 

and the overall objective function for mesh optimization is the element quality so that 

mesh irregularities can be identified and eliminated.  To achieve this goal, each element 

in the mesh will be evaluated during the process of mesh optimization.  

When generating tetrahedral elements in a three-dimensional domain using 

Advancing Front Techniques (AFT), the first step is discretization of the boundary 

surfaces using triangular elements. Next, all triangular elements on the boundary 

surfaces of the domain will define the initial front to be used to initiate volumetric mesh 

generation. Therefore, the qualities of surface elements will have a strong influence on 

the tetrahedral elements to be generated.  For this reason, optimization of surface 

triangular elements will be performed prior to volume discretization.  

In general, it has been shown by many investigators that 3-D surface mesh 

optimization is far more complicated than either 2-D mesh generation or 3-D volume 

mesh optimization.  To demonstrate this, it is noted that during surface mesh 

generation, each node movement and element improvement must be performed in a 

local tangent plane and also globally constrained onto the original boundary surface. In 

our work, a new method of 3-D surface mesh optimization has been developed and 

applied in our code. 

In surface mesh and volume mesh optimization, there is a general problem, 

which appears occasionally and results in invalid elements with negative areas and 

volumes in the process of node movement. An empirical method was suggested [62,63] 

to decrease the chances that this problem will occur.  A major disadvantage of this 

approach is that it will significantly increase processing time.  Another disadvantage of 

this approach is that it  does not solve the problem, but only decreases the chances that 

the problem will occur.  We have developed a method for completely eliminating this 

possibility and have implemented it in the current version of the algorithm.  Some of the 

technical issues are outlined in the following sections. 
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III.6.1 3-D surface mesh optimization 
 
Two definitions are used frequently in this note 

Element neighbor of node A:   If element E contains node A, then element E is 

called as an element neighbor of node A. 

Node neighbor of node A:  If element E contains node A, then all the nodes in 

element E except node A are called as the node neighbors of node A. 

 Using these definitions, there are several key steps in the 3D mesh optimization 

process that we have implemented.  The first is to optimize the surface meshes on the 

surfaces of the volume to be discretized.   

 

III.6.1.1 Surface mesh optimization for 3D volume 
 
 As note above, the first part of the process for optimizing a 3D mesh in a volume 

is to optimize the surface mesh.  There are several key steps in the surface mesh 

optimization process that we have implemented.  They are designated (a) node 

examination, (b) edge examination and (c) surface mesh smoothing. 

Node examination 
In this process, all of the nodes on the surface mesh are considered, one by one. 

Suppose A is an arbitrary node on the surface of the 3D region.  Then, if NA = 3 (the 

number of triangular element neighbors of node A on all boundary surfaces), node A will 

be deleted.  This process is shown in Figure 50. 

Edge examination 
In this process, all of the edges on the surface mesh are considered, one by one.  

As shown in Figure 51, suppose edge AB is an arbitrary edge in surface mesh.  If NA, 

NB, NC and ND are the numbers of triangular elements connecting to node A, node B, 

node C and node D, respectively, and (NA+NB) − (NC+ND) > m, then edge AB will be 

replaced by edge CD, where the parameter m=4 is used in our code. 
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Surface mesh smoothing 
Here, a new 3-D surface mesh smoothing technique is proposed in our work. 

When performing mesh smoothing on a 3-D surface, each node movement must be 

constrained to remain on its corresponding spatial surface. That is, node movement 

must be constrained in a local tangent plane and its final location must also be on the 

original spatial surface. 

Without loss of generality, suppose node A is an arbitrary node on a 3-D 

boundary surface, and there are m node neighbors for node A so that { Ni, i= 1, 2, …, m 

}.  Define  

1. VAi as the location vector of the ith node neighbor of node A in global coordinate 

system (i= 1, 2, …, m) 

2. VA as the location vector of node A, 

3. ΦAi is the weighted function at node Ni with respect to node A (i= 1, 2, …, m), 

which is a function of mesh density at nodes Ni and A, where AiΦ = ),( iA ddf              

i= 1, 2, …, m   and where Ad  and id  are the mesh density at nodes A and Ni, 

respectively, 

4. NA as the out-normal unit vector of the 3-D surface at node A, then one has 

 

Then by defining the following vectors 

SAi=
( )
( ) AAAi

AAAi

NVV
NVV

×−
×−              i= 1, 2, …, m   

TAi= NAX SAi                          i= 1, 2, …, m   

 

We have a new location vector new
AV  of node A that can be expressed as 

 

new
AV = AV +

∑

∑

=

=

Φ

−Φ

m

i
Ai

m

i
Ai

1

1
AiAAi TVV
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To avoid introducing invalid elements with negative areas due to node 

movement, various methods and criteria for guaranteeing reasonable modification on 3-

D surfaces have been implemented in our optimization code. 

 

 

III.6.1.2 Volume mesh optimization 
 

Processes that are similar to those used for surface mesh optimization  are 

implemented.  The technical issues for volume mesh optimization are listed as follows 

Node examination 
Sweeping all the nodes in the domain in turn. Suppose A is an arbitrary node, if 

NA = 4, then node A will be deleted, where NA is the number of tetrahedral element 

neighbors of node A. (Figure 52). 

Edge examination 
 Procedures are nearly identical to ones used for surface mesh smooothing 

Element facet examination 
 Procedures are nearly identical to ones used for surface mesh smooothing 

Volume mesh smoothing  
Visiting all the nodes in turn, and performing mesh smoothing for each 

reasonable node movement. The laplacian smoothing method is used here 

new
AV = AV +

( )

∑

∑

=

=

Φ

−Φ

m

i
Ai

m

i
Ai

1

1
AAi VV

                                   (5) 

To avoid introducing invalid elements with negative areas due to node movement, some 

techniques and criteria for reasonable modification have been used in our optimization 

code instead of the method proposed in literature [51]. The numerical results show that 

it takes less CPU time in mesh smoothing by using our method than that proposed in 

[52]. 

 Figure 53 shows two examples of the effect of smoothing on the overall quality of 

both (a) a surface mesh and (b) a volumetric mesh. 
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III.7 Recent Enhancements in CRACK3D Simulation Code 
 

Considering the application of CRACK3D in real-life structural analyses, some 

work has been done to speed up the code. Additionally, more options and special data 

output make the code more powerful and more convenient for users to use. 

1. Enhance the capacity of User-Controlled update of [K] 

2. Add a frequency parameter for controlling writing results to third-party software 

(e.g., ANSYS) 

3. Provide two approaches for handling the plastic strain effect in the global 

equilibrium equations. 

4. Enhance the capacity that a crack front can evolve by two different ways, one is 

to evolve node by node; the other is to evolve with the entire crack front 

simultaneously. This option can apply to ANY CASE. 

5. Stop automatically at a specified external load number given by user for ANY 

CASE. 

6. Stop automatically when total crack growth increment at specified master node 

position is equal to or just greater than a specified crack increment for ANY 

CASE. 

7. Stop automatically when any one of crack fronts touches the specified node on 

the crack path for the case of NODE RELEASE. 

8. Display reaction force using ANSYS. 

9. Output crack front shape at each loading step. 

10. Output load-versus-crack increment at each loading step (conditionally) 

11. Output load-versus-displacement at a specified node position. 

12. Text file “CRACKFR.TXT” records the crack front shape and the corresponding 

loads at some special loading steps just before the next crack growth 

13. Text file “CRACKGR.TXT” records the total crack growth increment at master 

node position and the corresponding loads at some special loading steps just 

before the next crack growth 
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14. Text file “CRACKLD.TXT” records the displacement and the corresponding loads 

at a specified node at some special loading steps just before the next crack 

growth. 

 

IV. Experimental Studies 
 

IV.1 Experimental Study of Crack Growth in Thin Sheet Material under Tension-Torsion 
Loading 

 
IV.1.1 Background 
 

To validate computational models and assess the viability of using a critical COD 

stable tearing criterion for flaws in 2024-T3 aluminum experiencing tension stresses (Sp) 

and torsion stresses (ST), a complete set of experimental measurements for (a) critical 

COD during crack growth under nominal tension-torsion loading, (b) the evolution of 

crack path with crack growth and (c) crack surface shape as a function of loading have 

been obtained.  Data from this work will provide an important experimental database for 

use in assessing the predictive capability of advanced, three-dimensional, crack growth 

simulation tools. 

 

IV.1.2 Specimen Configuration and Test Procedure 
 

Figure 54 provides a schematic of typical specimen geometry.  The specimens 

were machined from 2024-T3 aluminum and fatigue pre-cracked in the LT orientation so 

that the initial a/w = 0.0833.  All tests were performed on a 50 Kip MTS test frame using 

an MTS Testar system with PID controller and user-generated control programs. To 

perform each experiment, the following procedure was employed.  First, axial 

displacement was used to control load application to the specimen.   During the loading 

process, output from the axial load cell was input to the torsion actuator to generate a 

proportional, applied torque.  Finally, torsional rotation is increased until the required 

torque was attained.  
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Since three channels of input were used to control the test process, it was 

necessary to set appropriate tuning factors for all three channels of input to ensure 

stability of the system for the type of specimen being tested.  In this regard, it is noted 

that the control process described above was slightly unstable at low levels of applied 

loading, being fully stable for loads greater than 400 N.  Defining representative global 

elastic stresses in thin rectangular sheets under torsion and tension by ST = 3T (t 2 w)-1 

and SP = P (t w)-1, respectively, where t is the specimen thickness and w is the 

specimen width, experiments were performed at five levels of ST/SP in the range 0.0≤ 

ST/SP ≤ 6.64.  In this work, complete results are reported for ST/SP = 0, 1.66 and 6.64 

and partial results are provided for ST/SP = 3.32 and 4.98. 

 To accurately quantify COD in the region 1mm behind the crack tip, the process 

of three-dimensional digital image correlation (DIC-3D) [53-56] was used to obtain 

stereo images of a region around the moving crack tip that is approximately 4mm by 

4mm in size (see Figure 55). Due to both the high magnification required and the need 

to follow the moving crack tip, special considerations were used when setting up the 

two-camera system. In particular, (a) both cameras were mounted to a cross member 

that was specifically designed for maximum rigidity to minimize relative motion between 

the two cameras during the experiment, (b) digitally-controlled stepper motors were 

used to move the rigid cross member, thereby reducing the potential for inducing 

relative motion between the cameras during camera translation, (c) specially design 

lens mounts were used to reduce lens motion during the experiment and (d) special 

care was used to align the sensor plane of the camera so that is was perpendicular to 

the direction of translation stage motion for calibration. 

Achieving approximate perpendicularity of the sensor plane required that an 

iterative process be performed. First, shims were applied between the camera mount 

and the translation stage to rotate the sensor plane. Secondly, images were acquired 

before and after translation along the optical axis.  Thirdly, using the resulting 

displacement fields as an indicator of alignment (the presence of a pure dilation field 

indicates alignment), shim locations were altered until acceptable alignment was 

achieved.  Calibration of the system demonstrated that the overall accuracy of the 

system was approximately 1 micron in each component of displacement. 
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 After completing the alignment process, image data was acquired as follows. 

First, the DIC-3D system was calibrated using procedures described previously [53-56].  

Secondly, after calibration, a series of overlapping images of 4mm by 4mm areas 

located approximately 38 mm ahead of the initial crack position are acquired prior to 

loading. To obtain this series of images, the entire camera system was physically 

moved to the appropriate location along the anticipated crack path using an x-y-z 

translation stage. 

Once initial images were obtained, the camera system was translated to observe 

the initial crack tip region.  During loading, images were acquired of the crack tip region.  

This process continued, even during crack growth.  To maintain focus on the crack tip 

region, the rigid bar was translated and rotated during crack growth so that COD and 

surface strain fields could be computed during the growth process. 

 
IV.1.3 Fracture Surface Measurements 
 

 Inspection of the fracture surfaces from the tension-torsion tests indicated that 

the initially flat fatigue crack rapidly transitioned to a slant fracture surface.  Since the 

goal of these studies is to develop an improved understanding of the fracture process in 

the tension-torsion specimens, the shape of the fracture surface was measured 

accurately for each ST/SP.  Once measured, the data for the actual crack surface shape 

will be used in detailed finite element analyses to provide critical insight into the 

evolution of the stress and strain fields in the crack tip region prior to, and during, the 

crack propagation process.  

 To obtain these measurements, a novel, high accuracy, fringe projection system 

[57] was used to obtain full-field  (X,Y,Z) positions for the entire fracture surface.  To 

optimize the accuracy of the measurements across the entire fracture surface, two 

overlapping regions of the fracture surface were measured independently.  The overlap 

regions were used to combine two measurement sets into a single data cloud for the 

entire fracture surface.  The estimated standard deviation for the spatial position 

measurements at each point in the measurement field is approximately 10 microns.  
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 The resulting surface profiles for the complete fracture surface after combining 

two separate data sets using the procedures described above are shown in Figure 56 

for ST/SP = 0.0, 1.66 and 6.64. 

 Figure 57 graphically presents the evolution of crack slant angle with crack 

growth ST/SP = 0.0, 1.66 and 6.64.  In each case, slant angle was determined by 

performing linear regression on the height data (approximately 30 points per line) every 

0.20 mm along the fracture surface. 

 

IV.1.4 COD Measurements 
 

COD was measured throughout the crack growth process for all ST/SP values by 

computing the relative, three-dimensional displacement vector for subsets above and 

below the crack line that are located approximately one millimeter behind the current 

crack tip.   Figure 58 presents all of the COD measurements from the tension-torsion 

tests, along with a horizontal line representing the mean value for the COD data for all 

Δa > 10 mm. 

 

IV.1.5 Crack Tunneling Measurements 
 

As slant crack growth progresses, crack tunneling is occurring simultaneously.  

To assess the level of crack tunneling, the procedure outline by Dawicke et al [7] was 

used to obtain trends in through-thickness crack extension.  Fatigue pre-cracking was 

performed to obtain a sharp crack with minimal crack tip plasticity.  Using baseline tests 

to determine when crack growth initiated for each ST/SP ratio, each specimen was 

loaded under combined tension-torsion until either interior stable tearing was predicted 

to occur or a pre-specified amount of surface crack growth was observed.  At this point, 

a change in loading mode was performed and tensile fatigue loading was applied to 

mark the stable tearing crack front.  Metallographic analysis of the fracture surface in a 

scanning electron microscope was performed to measure crack front shape.   A total of 

eight separate specimens were tested to increasing levels of tension and torsion so that 

trends in crack tunneling could be measured. 
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Figure 59 presents crack front data for ST/SP = 0.0, 1.66 and 6.64.  Figure 60 

presents a non-dimensional measure of crack tunneling for each ratio ST/SP as a 

function of the amount of crack growth. 

 

IV.1.6 Concluding Remarks 
 

It is noted that previous Mode I/II [2-6] results and our Mode I/III results are 

consistent with experimental observation of the active micro-mechanisms during mixed 

mode fracture [58-61] and results from previous numerical simulations of the fracture 

process [62,63]. In essence, the processes of micro-void growth and shear band 

formation compete to dominate the fracture process. For local tensile conditions, void 

nucleation and growth from large particles is generally recognized as being a primary 

mechanism for fracture. In this case, the void growth region is under locally Mode I 

conditions, opening deformation controls crack tip opening and the COD⊥ component of 

COD is dominant [2-6].  For local shear conditions, nucleation and growth from small 

particles that result in void sheeting and shear localization has been identified as the 

primary mechanism for fracture.  In this case, the process zone is under Mode II or 

Mode I/III conditions and the shear component of COD is the dominant crack tip 

opening deformation.  

Recent fracture experiments of riveted aluminum panels [64] performed at the 

FAA Technical Center under internal pressure loading exhibited both fatigue crack 

growth and stable tearing.  In both modes of crack growth, slant fracture was observed 

throughout the crack growth process.   Of primary significance in the FAA experiments 

was the observation that stable tearing between rivets in the panel occurred in a 

manner that was nearly identical to that seen in these tension-torsion experiments; the 

fracture surfaces tended to interfere during crack growth and mode III conditions 

appeared to be a significant part of the local deformations.  Therefore, understanding 

the complex fracture behavior in the tension-torsion specimens should provide the 

foundation for predicting stable crack growth behavior in thin aircraft structures. 

Finally, experimental evidence and initial finite element analyses suggests that a 

critical COD is a quantitative measure of the processes occurring in the crack tip region 
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that lead to fracture for mode I/II conditions.  Due to the complexity of the mixed mode 

I/III crack growth process, accurate simulation of the fracture process requires the 

development of novel, robust simulation algorithms capable of predicting the evolution 

of complex, three-dimensional crack front shapes using general fracture criteria.  Given 

the exponential growth of computational capabilities in recent years, it is simply a matter 

of time until the required simulation tools are developed.  Once developed, the 

experimental data presented in this work will provide a basis for identifying and 

quantitatively verifying those fracture criteria capable of predicting ductile crack growth 

under complex loading conditions. 

 

IV.2 Small specimen tests for void growth measurements 
 
 The goal of this work is to obtain a relationship between void formation and 

stress state for AL 2024-T3.  As part of this work, finite element analyses have been 

completed to determine the range of constraint levels present in a small, notched 

cylindrical specimen.  In addition, as described in the following section, a series of 

experiments have been performed to determine whether void growth processes can be 

observed in small, notched cylindrical specimens.  In addition, an in-plane shear 

specimen has been developed and will be used to relate void growth to the applied 

shear stress state. 
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IV.2.1 Notched cylindrical specimen tests 
 

Figure 61 shows the notched cylindrical tensile specimens that are being tested.  

Two of the specimens for each geometry and direction (longitudinal and transverse to 

the rolling direction) were loaded until failure and the load at failure recorded. As shown 

in Table 1, subsequent specimens have been loaded to different percentages of those 

failure loads. 

Table 1 
 

Specimen 
Failure Load 

(lbs) 
Maximum Load 

(lbs) Percentage 
F 

Transverse 2315 2189 94.6 
F 

Longitudinal 2345 2110 90.0 
H 

Transverse 1962 1754 89.4 
H 

Longitudinal 1945 1762 90.6 
 

Figure 62 shows an optical micrograph for a polished specimen taken from the 

transverse F specimen.  There is clear evidence of particle fracture and micro-void 

initiation in Figure 62, but no large micro-voids were detected in these specimens.  

Since the fracture and debonding of inter-metallic particles are precursors to full-scale 

void formation, the specimens will also be examined using a scanning electron 

microscope to check for evidence of de-bonding between the aluminum matrix and the 

inter-metallic particles. 

Since Table 1 shows that the maximum tensile load for void growth studies in 

specimens F and H is considerably below the failure load, and the void growth process 

is known to be exponential in nature near maximum load, a 5000 pound load cell has 

been purchased to replace the previously-used 20,000 pound load cell.  Together with 

modifications to the control software, the load resolution is increased by 20-fold with a 

goal of improving ability to stop an experiment at 99.5% of the maximum load so that 

sectioning can be performed and voids clearly identified. 
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IV.2.2 Development of a shear specimen 
 

To obtain voids under nominally shear loading, a new shear specimen has been 

designed to allow examination of regions just ahead of crack tip as crack extension 

occurs.  Figure 63 shows a diagram of the new specimen.  The groove depth of the 

9.5mm 2024 plate is 3mm, and the 6.35mm thick, 2524 plate has a groove depth of 

1.9mm  The specimens were designed to fail by shear in the grooves before yielding in 

the tongues.   

Like the notched cylindrical tensile specimens, shear specimens were made in 

both directions (transverse and longitudinal to the rolling direction) from both materials.  

Initial testing shows a fracture surface with some shear features, but also some tensile 

features.  Some minor design changes are being considered to increase the prevalence 

of the shear mode in the groove region.  The experimental plan for the shear specimens 

is also similar to the tensile specimens.   

 

 

V Summary 
 
 The broad objectives of this project are to (a) develop the theoretical foundation 

for the development of a continuum-based, general stable crack growth criterion in 

ductile materials, (b) develop a computational methodology for implementing the 

criterion to predict stable tearing along a general path in three-dimensions, (c) develop 

an initial experimental data base for validation of the predictive methodology and (d) 

develop and validate a mixed mode fracture criterion using the initial experimental data 

base and completed computational methodology.   

 First, detailed theoretical and computational studies of void growth have been 

completed that show (a) for each initial void volume, a functional relationship exists 

between the mean stress  σmean and effective stress σeff at the instant of void link-up and 

crack growth, demonstrating that a two-parameter fracture criterion is viable for 

predicting stable tearing and (b) the experimentally observed link between plastic strain 
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and mean stress  further indicates that there is the basis for obtaining a critical crack 

opening displacement (COD) as a function of mean stress, that is, COD(σmean).   

 Second, a fully functional three-dimensional crack growth algorithm has been 

developed that is capable of predicting crack growth along a general, three-dimensional 

surface.  The algorithm, designated CRACK3D, utilizes the Pre and Post processing 

capabilities of Ansys while performing all of the crack-front calculations internally.  As 

part of the development process, (a) improved methods for crack tip re-meshing have 

been developed and implemented which only re-mesh a region around the current crack 

tip and (b) new approaches for volumetric and surface optimization have been 

developed and implemented.  As part of the development process, detailed simulations 

have been performed to complete the debugging process. 

 Third, a set of controlled mode I,  mixed mode I/II and mixed mode I/III 

experiments have been completed for aluminum 2024-T3.  These experiments included 

(a) fatigue marking to identify the surface crack front, (b) three-dimensional non-

contacting measurements to quantify the shape of a complex, slanted fracture surface 

and (c) measurements of surface COD during stable tearing.  In addition to these 

experiments, a set of experiments have been attempted to related the combination of 

stresses, σmean and σeff, in a region to the presence of actively growing voids.  Here, the 

goal of the experiments is to provide quantitative evidence for defining a portion of the 

relationship between σmean and σeff  for 2024-T3 aluminum 
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Figure 1: Crack-growth paths in Arcan specimens for various loading angles 
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Figure 2: (a) Schematic representation for Lp definition; (b) Mixed mode I/II 
crack tip plastic zone shape defined by σe=ξσ0; (c) A normalized mixed 

mode I/II crack tip plastic zone shape in Figure 2b 
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Figure 3: The hardening rules for AL-2024T3 and power-laws, n=10 and n=3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Finite element mesh for small scale yielding (SSY) model 
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Figure 5: Typical geometry and finite element meshes, (a) TPB, c/w=0.5, and (b) TB, 
β=30o 
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Figure 6: Angular variations of Lp/RK, von-Mises stress σe/σ0 and shear stress σrθ/σ0 

at r/RK=0.0865, SSY model, (a) T/σ0 =0, χ=0o, (b) T/σo=0, χ=36.9o, (c) T/σ0 =0, 
χ=90o, (d) T/σ0 =0.47, χ=36.9o, and (e) T/σ0 =-0.47, χ=36.9o 
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Figure 8: Angular variations of Am, normal stresses σrr/σ0 and σθθ/σ0 at 
r/RK=0.0865, SSY model, (a) T/σ0 =0, χ=0o, (b) T/σo=0, χ=36.9o, (c) T/σ0 =0, χ=90o, 

(d) T/σ0 =0.47, χ=36.9o, and (e) T/σ0 =-0.47, χ=36.9o 
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Figure 9: Contained and uncontained yielding shapes of (a) TPB specimens, c/w=0.5 

and (b) TB specimen, β =30 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Angular variations of Lp/RK, effective stress σe/σ0 and shear stress σrθ/σ0 

for (a) TB specimen, β =30o, and (b) TPB specimens, c/w=0.5 
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Figure 11: Angular variations of Am and normal stresses (σrr/σ0 and σθθ/σ0) for (a) 
TB specimen, β =30o, and (b) TPB specimens, c/w=0.5 
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Figure 12: The variation of Σe=σe/σ0 with normalized distance, r/Lp, in  (a) mode I 
and (b) mode II directions, respectively, for SSY model, power law material (n=10). 
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Figure 13: The variation of  (a) Σrr=σrr/Arrσ0 , (b) Σθθ=σθθ/Aθθσ0  and (c) 
Σm=σm/Amσe with normalized distance, r/Lp, in mode I direction, respectively, for 

SSY model and power law material (n=10). 
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Figure 14: The variation of  (a) Σrr=σrr/Arrσ0 , (b) Σθθ=σθθ/Aθθσ0,  (c) Σrθ=σrθ/Arθσ0  

and (c) Σm=σm/Amσe with normalized distance, r/Lp, in mode II direction, 
respectively, for  SSY model, power law material (n=10). 
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Figure 15: The variation of Σe=σe/σ0 with normalized distance, r/Lp, in (a) mode I 
and (b) mode II directions, respectively, for Al-2024T3 TB and TPB specimens 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: The Variation of (a) Σrr=σrr/Arrσ0, (b) Σθθ=σθθ/Aθθσ0 and (c) 
Σmm=σmm/Ammσ0 with normalized distance, r/Lp, in Mode I direction, respectively, 

for Al-2024T3 TB and TPB specimens 
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Figure 17: The variation of  (a) Σrr=σrr/Arrσ0 , (b) Σθθ=σθθ/Aθθσ0,  (c) Σrθ=σrθ/Arθσ0  

and (c) Σm=σm/Amσe with normalized distance, r/Lp, in mode II direction, 
respectively, for Al-2024T3 TB and TPB specimens 
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Figure 18: The variation of Σe=σe/σ0 with normalized distance, r/Lp, in  (a) mode I 
and (b) mode II directions, respectively, for TB and TPB specimens, power law 

material (n=3) 
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Figure 19(c) 
 
 

Figure 19: The variation of  (a) Σrr=σrr/Arrσ0 , (b) Σθθ=σθθ/Aθθσ0  and (c) 
Σm=σm/Amσe with normalized distance, r/Lp, in mode I direction, respectively, for 

TB and TPB specimens, power law material (n=3) 
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Figure 20a      Figure 20b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20c      Figure 20d 
 

Figure 20: The variation of  (a) Σrr=σrr/Arrσ0, (b) Σθθ=σθθ/Aθθσ0 , (c) 
Σrθ=σrθ/Arθσ0,and (d) Σm=σm/Amσe with normalized distance, r/Lp, in mode II 
direction, respectively, for TB and TPB specimens, power law material (n=3) 

 

Σ r
r

r/Lp
II

Equation (34)

0.0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

0.0o

60.0o

75.0o

30.0o
15.0o

TB (β)
0.0

1.0
1.5

0.5

TPB (c/w)

Σ θθ

r/Lp
II

Equation (34)

0.0o

60.0o

75.0o

30.0o
15.0o

TB (β)TPB (c/w)
0.0

1.0
1.5

0.5

0.0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5
Σ r

θ

r/Lp
II

Equation (34)

0.0o

60.0o

75.0o

30.0o
15.0o

TB (β)
0.0

1.0
1.5

0.5

TPB (c/w)

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5
Σ m

r/Lp
II

0.0o

60.0o

75.0o

30.0o
15.0o

TB (β)
0.0

1.0
1.5

0.5

TPB (c/w)

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0



 86

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21a      Figure 21b 
 
 

Figure 21: The functions Aij(Am) in mode I direction for SSY model, TP and TPB 
specimens, power law material (n=10) and Al-2024T3. (a) Arr(Am) and (b) Aθθ(Am) 
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   Figure 22a          Figure 22b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Figure 22c 
 

Figure 22: The functions Aij(Am) in mode II direction for SSY model, TP and TPB 
specimens, power law material (n=10) and Al-2024T3. (a) Arr(Am), (b) Aθθ(Am), and 

Arθ(Am) 
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    Figure 23a        Figure 23b 
 

Figure 23: The functions Aij(Am) for TP and TPB specimens, power law material 
(n=3). (a) in mode I direction,  (b) in mode II direction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24: Variation of Σθθ=σθθ/σA
θθ with normalized distance rσ0/J in mode I 

direction, for SSY mode, power law material (n=10) 
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Figure 25: Modified Arcan fixture-specimen system and finite element model 
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   Figue 26(a)        Figure 26(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26(c) 
 
Figure 26: The variations of Σe=σe/σ0 and Σm  with normalized distance, r/Lp, in the 

mode I and mode II direction, Arcan specimen 
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Figure 27(a)     Figure 27(b) 
 
Figure 27: The variation of Σij=σ ij/(Aijσ0) with normalized distance, r/Lp

II , in mode 
II direction, Arcan specimen 

 
 
 
 

Figure 28(a)     Figure 28(b) 
 

Figure 28: Aij as function of Am in  (a) mode I and (b) mode II directions, 
respectively 
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Figure 29: Correlation of COD to Am and Lp in (a) mode I , and (a) mode II 
directions, respectively 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30: Typical experimentally observed relationship between plastic strain and 

constraint 
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Figure 31: Curves of σe versus Ep under different stress constraint levels 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32: Three-dimensional periodic array of spherical voids and unit cell model 

 



 94

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 33: Typical FE mesh for 3D simulations of void region utilizing symmetry 
boundary conditions 
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Figure 34(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34(c) 
 
 
 
 
 
 
 
 
 

Figure 34: 3D Simulation results at void link-up for fo = 0.005, 0.020, and 0.080 
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Figure 35: 3D Simulation results for (σm, Ep) at void link-up for 
fo = 0.005, 0.020, and 0.080 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 36: Best fit results for (σm, σe) at void link-up for 0.001 < f0 ≤ 0.10 
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Figure 37: Schematic of relationship between (σm, σe) and (Epc, Am) for a given fo 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 38: Schematic of flat and slant crack geometries 
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   Figure 39(a) Flat Crack Arcan Specimen Mesh 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 39(b) Focused Mesh at Crack Tip for Flat Crack 
 

Figure 39: Finite element meshes for the Arcan fixture-specimen system with  
a flat crack 
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Figure 40: and global coordinate systems for slant crack 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 41: Finite element mesh for the Arcan fixture-specimen with a slant crack 
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Mid-plane Slant Crack 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Front-plane Slant Crack 
 

Figure 42: COD variations at mid-plane and front surfaces for slant crack  
specimen 
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Figure 43(a)     Figure 43(b) 
 

Figure 43: Comparison of total COD for flat and slant cracks 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 44: Constraint radial comparison between the flat crack and the slant crack  

along an angle θ = 0° with the crack front 
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Figure 45: Constraint angular comparison between the flat crack and the slant 
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Figure 46: Flow chart for 3D crack growth code, CRACK3D 
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Figure 47: Schematic of boundary lines and nodal points for description of selection 

process 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 48: Schematic of nodal points for description of crack surface selection  
process 
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Figure 49: Example of 3D re-meshing results 
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Figure 50: Schematic of nodal points and elements for node identification and  
element  condensation during surface optimization 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 51: Schematic of lines and elements for line identification and element 
modification during surface optimization 
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Figure 52: Schematic of nodal points and 3D elements for element condensation  
during volumetric optimization 
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Figure 53: Comparison of surface and volume meshes before and after mesh 
optimization 
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(c) Before optimization (d) After optimization 
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Figure 54 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 54(a)           Figure 54(b) 
 
 
 
 

Figure 54: Tension torsion specimen with schematic of loading process 
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Figure 55: Close-up of crack tip region imaged during crack growth under tension-

torsion loading 
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(a) ST/Sp = 0.00    (b) ST/SP = 1.66 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) ST/SP = 6.64 
 
 

Figure 56: Profiles of fracture surface of 2024-T3 aluminum specimen for various 
combinations of tension and torsion loading 

 

-1

0

1

Z
(m

m
) -5

0

5

10

15

20

25

30

35

40

X (m
m)

-101

Y (mm)

XY

ZST/SP = 6.64

-1

0

1

Z
(m

m
)

-5

0

5

10

15

20

25

30

35

40

X (mm)

-1
0

1
Y (mm)

X

Y

ZST/SP = 0.00

-1

0

1

Z
(m

m
) -5

0

5

10

15

20

25

30

35

40

X (m
m)

-101

Y (mm)

XY

ZST/SP = 6.64



 112

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 57: Evolution of slant crack growth angle during tension-torsion loading of 
2.3 mm thick, 2024-T3 aluminum specimens 
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Figure 58: COD versus crack extension for various ratios of torsion and tension 
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Figure 59: Tunneling during slant crack growth under tension-torsion loading 
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Figure 60: Non-dimensional measure of tunneling during initial stages of crack  
growth 
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Figure 61: Notched cylindrical specimens (units in inches) 
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Figure 62: Optical microscope image near notch for specimen F (Light color is 
aluminum, dark particles are inter-metallic) 
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Figure 63: Shear specimen for void-growth studies (units in inches) 
 
 


